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The flow pattern throughout an urban network can be looked upon as the
result of two competing mechanisms. On the one hand, users of the system
(drivers, passengers, pedestrians) try to travel in a way that minimizes the
disutility associated with transportation. For example, motorists driving be-
tween a given origin and a given destination are likely to choose the route
with the shortest travel time. On the other hand, the disutility associated with
travel is not fixed but rather depends in part on the usage of the transpor-
tation system. Thus, in the previous example, the travel time on each of the
paths connecting the origin and the destination is a function of the total traffic
flow due to congestion. It is therefore not clear a priori which path through
the network has the shortest travel time. Consequently, it may not be obvious
what the flow pattern throughout the network will be under various con-
ditions. This book describes how this flow pattern can be determined for an
urban road network by modeling these two mechanisms (travel decisions and
congestion).

The analytical approach described in this text draws on analogies be-
tween the two mechanisms mentioned here and the interaction of supply and
demand in the marketplace. Instead of analyzing the price of a product and
the quantity consumed, the analysis here looks at transportation level of ser-
vice (or its inverse, travel disutility) and flows. The results of the analysis
include a set of flow and a set of level-of-service measures that are at equilibri-
um with each other.

The book looks at many dimensions of travel choice, including the de-
cision to take a trip, the choice of travel mode, the distribution of trips among
various possible destinations, and the choice of route between an origin and a

Xv



xvi Preface

destination. All these decisions, when aggregated and analyzed simultaneously
with the congested effects, result in the flow pattern through the network. The
analysis of all these travel choices is carried out by using a unified framework
that builds on graphical and network representation.

The problem of finding the equilibrium flow pattern over a given urban
transportation network is also known as traffic assignment. The basic solution
methodology is based on formulating the problem as a nonlinear optimization
and solving it as such. This book, however, does not require any prerequisites
in mathematical programming or graph theory. All the necessary background
is reviewed at an introductory level. The level of mathematics assumed in-
cludes college calculus and (in the last parts of the book) introductory prob-
ability concepts. The book uses extensively intuitive arguments and network
structures, which are utilized to illustrate many situations graphically.

This book grew out of a set of course notes used for two courses at
M.LT, one taken by graduate students and the other by undergraduates.
Currently, the courses (and the notes) are combined, drawing both upper-level
undergraduate and graduate students. The book was designed as a text for the
following classroom environments:

1. A primary text for an intensive one-semester (or two-trimester) course(s).

2. A primary text for a slower one-semester or a one-trimester course
(Chapters 1-6, 7, and/or 8, possibly 9, and parts of 13). Such a course
would cover only deterministic equilibrium methods.

3. A supporting text in an introductory urban transportation planning
course (Chapters 1, 3, 5, 6, and 7 with emphasis on the algorithms).

4. A supporting text in a course on operations research and mathematical
programming techniques, demonstrating the applications of the method-
ology.

The book should also serve practicing transportation engineers and
urban planners as a reference guide on issues of traffic assignment and urban
transportation networks analysis.

Many people have contributed to the development of this book. Warren
Powell of Princeton University and Carlos Daganzo of the University of
California at Berkeley joined me in most of my research in this area. Joel
Horowitz of the University of Iowa and Hani Mahmassani of the University
of Texas at Austin helped in the preparation of the manuscript by commenting
extensively on its early versions. Useful comments were also provided by Brian
Brademeyer, Stella Dafermos, Mark Daskin, Patrick Harker, Haris Koutso-
poulos, Larry LeBlanc, Joffre Swait, and all the students who took my net-
works course at M.LT. during the years in which the manuscript was in
preparation. The contributions of Karen and Jonathan are also greatly ap-
preciated.

YOSEF (“YOSSI”) SHEFFI
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Urban Transporiation
Networks Analysis

The amount of travel taking place at a given moment on any street, intersec-
tion, or transit line in an urban area is the result of many individuals® de-
cisions. Travelers choose if and when to take a trip for some purpose, which
mode of transportation to use (e.g., whether to drive or take public transit),
where to go, and which way to get there. These decisions depend, in part, on
how congested the transportation system is and where the congested points
are. Congestion at any point of the transportation system, however, depends
on the amount of travel through that point. This book describes how these
interactions between congestion and travel decisions can be modeled and
solved simultaneously to obtain the flow pattern throughout the urban trans-
portation network.

One of the major problems facing transportation engineers and urban
planners is that of predicting the impact of given transportation scenarios. The
analytical part of this problem can be dealt with in two main stages. First, the
scenario is specified mathematically as a set of inputs that are used to predict
the flow pattern resulting in from such a scenario. Second, the flow pattern is
used to calculate an array of measures that characterize the scenario under
study. The inputs to the analysis typically include a description of the follow-
ing (either existing or projected):

1. The transportation infrastructure and services, including streets, intersec-
tions, and transit lines.

2. The transportation system operating and control policies
3. The demand for travel, including the activity and land-use patterns
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The first stage of the analysis uses these inputs to calculate the flow
through each component of the urban network. Flow is measured in terms of
the number of travel units (vehicles, passengers, pedestrians) that traverse a
given transportation facility in a unit time. This part of the analysis builds on
functional relationships between flows and congestion as well as relationships
between congestion and travel decisions.

The second stage of the analysis involves the calculation of an array of
measures of interest, given the flow pattern. These may include the following:

1. Level of service measures, such as travel time and travel costs. These
affect the users of the transportation system directly.

2. Operating characteristics, such as revenues and profits. These are of
primary concern to the operators of the system.

3. Flow by-products, such as pollution and changes in land values. These
affect the environment in which a transportation system is operated.

4. Welfare measures, such as accessibility and equity. These may indirectly
affect various population groups. ‘

The focus of this book is on the first stage of the analysis, that of
determining the flow pattern, given the inputs. Many of the aforementioned
measures can be calculated from these flows in a straightforward manner.
Others (such as pollution level or equity measures) may require sophisticated
methodologies and complex models which are not within the scope of this
book. These analyses, however, use the flow pattern as a major input. In
addition, a complete analysis of a given scenario may involve important con-
siderations which are not based on the flow, such as construction costs and
political and institutional factors.

The perspective of the modeling approach presented in this text is descrip-
tive rather than normative. In other words, it describes how individuals travel
through an urban transportation system given the components of that system
(which are specified as inputs). It does not attempt to determine the optimal
system configuration (in terms, say, of which project should be built or what
kind of control policies should be utilized). In many cases, however, the analy-
sis is motivated by the need to decide on a given transportation investment,
regulation, or policy from among a set of alternative courses of action. In this
case, each of the alternative scenarios should be specified mathematically as a
set of inputs to the analysis. The models described in this book are then
formulated and solved for each alternative scenario in order to predict the flow
pattern that is used, in turn, to develop many of the measures of interest. The
full set of measures associated with each alternative is then used to compare
their respective impacts. These measures are, typically, also compared to the
set of measures characterizing a base case (which can be the current system or
a projection of how the current system will operate under the “do nothing”
alternative). These comparisons serve as a basis for reccommendation regarding
the preferred course of action.
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This book presents the various assumptions, models, and algorithms
used to calculate the flow pattern from the inputs. The thrust of the book is
the interaction of congestion and travel decisions that result in this flow. Since
congestion increases with flow and trips are discouraged by congestion, this
interaction can be modeled as a process of reaching an equilibrium between
congestion and travel decisions.

The remainder of this chapter introduces and explains the notion of
equilibrium in the context of urban transportation analysis. Section 1.1 pre-
sents this equilibrium in general terms, and contrasts it with the more familiar
economic equilibrium framework. Section 1.2 describes the mathematical rep-
resentation of the urban transportation system as a network. The network
structure is a fundamental characteristic of the equilibrium discussed in this
text. Section 1.3 gives the actual definition of several equilibria between con-
gestion and travel decisions. These equilibria are defined specifically for urban
transportation networks. The section ends with an outline of the text. Finally,
Section 1.4 summarizes the first chapter and Section 1.5 suggests some further
readings.

1.1 EQUILIBRIUM ANALYSIS
OF TRANSPORTATION SYSTEMS

The concept of equilibrium analysis is tied to the systems-oriented view of
urban transportation taken in this text. This section discusses three related
issues that explain this view: (1) the need for the systems-based approach to
the analysis of urban transportation, (2) the general notion of equilibrium and
the various types of equilibria, and (3) the applications of these notions to
transportation systems analysis.

Systems Approach to Urban Transportation

The traditional approach taken in many engineering analyses is to iso-
late a component of a system and analyze this component individually. This
approach is also used in analyzing the effect of small changes in the urban
transportation system. For example, traffic lights are typically timed by con-
sidering only the traffic using the intersection under consideration. The effects
of the change on adjacent intersections are usually assumed to be negligible.
Similarly, parking regulations, intersection designs, and other changes in the
urban transportation system are typically analyzed by considering only the
immediate environment.

If the impact of a particular policy or design is likely to be small, this
type of analysis may be sufficient. When the change being analyzed is more
substantial, however, it will affect not only the component that is being
changed but other parts of the system as well. As an illustration of this type of
ripple effect, consider a congested segment of an urban arterial. In order to
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reduce congestion, the local transportation authority considers the costs and
benefits of widening this segment of road. Given the existing traffic flow, the
addition of one lane is judged to be sufficient, since the added lane will mean
that the existing traffic will be able to flow smoothly and with only minor
delays. The project benefits calculated in this manner may, however, be mis-
leading since travel decisions were not taken into account. For example, it is
likely that motorists who did not use the arterial segment before, will subse-
quently make use of the improved facility. Thus the traffic conditions on the
widened facility will not be as good as anticipated due to the increased flow,
which will cause increased congestion. In turn, some of the roads leading into
the improved facility may get congested as motorists try to access and exit
from the widened segment. In addition, the flow conditions on roads parallel
to the widened facility may improve as a result of these shifts since the traffic
flow on them may decrease. Drivers on other parts of the system may then
realize a change in their flow conditions and alter their route accordingly.
Each route change will lead to further changes in congestion levels and conse-
quently more route changes. Ultimately, however, these ripple effects will
lessen and, after a short while (several days or a few weeks), the system will
stabilize at a new equilibrium point with no more significant changes occurring.

The preceding example illustrated the flow changes resulting from a
change to the transportation infrastructure. Similar changes may occur if
transportation control policies are changed or if new transporation services
are introduced. Furthermore, new flow patterns may result from changes not
directly tied to the transportation system but rather changes in the general
activities in the urban area. These activities create the need and the demand
for transportation. For example, consider the opening of a new shopping
center. The center attracts shopping trips which are partially new (generated
by people who now shop more frequently) and partially diverted from other
destinations. The streets leading to the new center will get congested, causing
some travelers who are only passing through the area to change route, mode
of travel, or the timing of their trips. These diversions will change the flow and
congestion throughout the system, causing further changes in travel decisions.
Other changes will occur around other shopping centers, which may experi-
ence some decline in the level of flow. Again, after a while the flows will reach
a new equilibrium point. At this point, the frequency of trips, the trip destina-
tions, the modes of travel, and the chosen routes are stable throughout the
transportation network.

The notion of equilibrium in this context parallels the physical notion of
stable equilibrium, which is the state in which there are no (net) forces that try
to push the system to some other state. Furthermore, when the system is in
disequilibrium, there are forces that tend to direct the system toward the
equilibrium state. In the case under consideration, the flows are being
“pushed” toward equilibrium by the route-switching mechanism. At equilibri-
um, the flows will be such that there is no incentive for route switching. It is
this state of equilibrium that is the focus of this text.
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As the examples above indicate, the equilibrium flow pattern associated
with a given scenario may involve unanticipated flow levels and congestion in
various parts of the urban network. This bears directly on the question of who
is affected under this scenario.-Whereas some travelers will be better off, others
may be worse off. A consideration of the entire system is therefore neccessary
in order to account for the wide spectrum of effects associated with a particu-
lar scenario. In other words, the equilibrium flow pattern that would prevail
under each scenario can be found only by analyzing simultaneously all ele-
ments of the urban transportation network.

The next section explains the equilibrium concept in several contexts,
leading to the role of such analysis in the study of urban transportation
systems.

Equilibrium in Markets

The classical view of a (perfectly competitive) economic market for a
certain good includes two interacting groups: the producers and the con-
sumers. The behavior of the producers is characterized by a supply function
and the behavior of the consumers is characterized by a demand function. The
supply function expresses the amount of goods that the suppliers produce as a
function of the price of the product. As the price increases, it becomes profit-
able to produce more and the quantity supplied increases. The demand func-
tion describes the aggregate behavior of consumers by relating the amount of
the product consumed to its price. As the price increases, the amount con-
sumed decreases.

Figure 1.1 depicts simple demand and supply functions for a certain
product. The point where the two curves intersect is characterized by the
“market clearing” price, P* and quantity produced, Q*. This is the point
where the price of the product is just right, so that the entire quantity pro-
duced is consumed. If the price is higher than P*, production will be higher
than consumption, as shown in Figure 1.1b. Such an imbalance cannot be
sustained, since not all of the product sells and inventories will grow indefi-
nitely. Prices will eventually fall and consumption will increase accordingly. If
the price is lower than P*, the quantity demanded is higher than the pro-
duction. Such a situation is again unstable since producers will try to increase
prices in order to capture the consumers’ willingness to pay more. Such price
increases will lead to higher production and lower demand. Thus, if the prices
are either lower or higher than P*, market forces will tend to push the price
toward its “market clearing” level. At this point the price will be stable and
thus the point (P*, Q*) is known as the equilibrium point.

The monetary price of a product is not always the only determinant of
the quantity consumed. Products can be characterized by many attributes that
influence consumption. Furthermore, some of these characteristics are not
constant but rather a function of the quantity consumed.

Consider, for example, the demand for gasoline at a certain gas station.
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Figure 1.1 Demand/supply equilibrium: (a) market-clearing quantity and price; (b)
price too high; (c) price too low.

The lower the price of gasoline at this station, the larger the number of
motorists who would want to purchase gasoline there. As the number of
customers grows, a queue appears and customers have to wait in line. At this
point, the number of additional customers is-influenced by two elements: price
and waiting time. The station operator can set only the price. For a given
price, the volume of sales will be determined by two factors: the waiting time,
which is influenced by the number of customers in the queue, and the willing-
ness of customers to wait, which determines the demand for gasoline at the
station.

For a given gasoline price,} then, the situation can be characterized by
two functions. The first is a demand function that relates the customers’ arrival

tAssuming also that the price and waiting time in all other stations in the area is fixed and
known.



8 Part | Urban Networks and Equilibrium

rate to the delay (in other words, it gives the number of customers entering the
station per unit time as a function of the waiting time). The second function
relates the waiting time to the arrival rate of customers. This second function,
unlike a supply function, does not capture the behavior of any economic agent.
Instead, it depicts merely a physical phenomenon, which in this case is the
delay associated with queueing. This function is termed a performance function.
Unlike the supply and demand functions, the performance function does not
have the price or any other service characteristic as its argument, and it does
not give the quantity consumed or produced. Instead, its argument is the
quantity consumed (or the arrival rate in the case of the example considered
here) and it gives the service characteristic (which is the delay in this case).
Figure 1.2a depicts a hypothetical performance curve showing how the

T
‘\performance
S i (a)
© Ll hiinindy demand
o |
|
1
1 » X
X* Arrival Rate
B
K] b
s (b)
|
|
! Y — X
X4 X2 Arrival Rate

(c)

Delay

> X
' *
X X7 X Arrival Rate
Figure 1.2 Demand/performance equilibrium for the gas station example: (a) equi-

librium arrival rate and waiting time; (b) a waiting time that is too low; (c) a shifted
demand curve (higher price) and a shifted performance curve (higher service rate).
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delay, t, increases with the arrival rate, x. The figure also depicts a demand
curve which shows the arrival rate associated with any given delay (this curve
should be read by entering the vertical axis). When the arrival rate is low,
there will be little queueing and the delay will be low, attracting more cus-
tomers. When the arrival rate is very high, the delays are very high and no
customers will join the queue. The only stable situation will be when the
arrival rate is such that it creates a delay that corresponds to the same arrival
rate. This equilibrium point is denoted by (x*, ¢*) in Figure 1.2a. Figure 1.2b
shows a situation in which the arrival rate, x, is too low (i.e., x; < x*). The
delay associated with this arrival rate is t,, in accordance with the per-
formance function. This delay, however, generates an arrival rate of x, (where
X, > Xx*), in accordance with the demand function. As the arrival rate in-
creases, the delay increases toward the equilibrium point where the delay
matches the arrival rate.

Note that the demand function given in Figure 1.2 holds only when
everything else (price, number of pumps, delay and price at other stations, etc.)
is fixed. Since the demand is a function of both price and delay, a change in the
price would show as a different demand function in the arrival rate/delay
space. The demand curve associated with a higher price is depicted by the
dashed line in Figure 1.2c. The equilibrium quantity here, x’, will be lower
than x*, as expected. The dotted line in Figure 1.2c depicts a performance
function associated with more pumps operating. In this case the delay associ-
ated with each arrival rate is smaller and the equilibrium quantity, x”, will be
higher than x*, again as expected.

The economics of the gas station operation can still be analyzed in the
framework of supply/demand equilibrium. In this case the demand function
gives the quantity consumed (or the customers’ arrival rate) as a function of
both price and delay. A supply function will give the price charged by the
operator as a function of the quantity consumed. This supply/demand equilib-
rium, however, cannot be solved in isolation since the delay depends on the
arrival rate. The latter relationships are given by a performance function. A
complete economic analysis utilizes all three functions to solve, simultaneous-
ly, for the arrival rate, the delay, and the price. The demand/performance
analysis given in the preceding paragraphs assumed that the price is fixed and
known.

This example should clarify the differences between a supply/demand
and performance/demand equilibrium. In a sense, the performance/demand
analysis is a special case of the supply/demand equilibrium. It is obtained by
fixing some of the variables in the supply/demand equilibrium problem.

The Transportation Arena
Transportation is a service that the transportation industry (including

road builders, vehicle manufacturers, transit operators, traffic managers, etc.)
offers travelers. As in many other service industries, the transportation prod-
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ucts can be characterized by the level of service offered in addition to the price
charged. Transportation level of service can be measured in terms of travel
time, schedule convenience, reliability, safety, comfort, spatial coverage, ac-
cessibility to the service, and many other factors.

Many of the components of transportation level of service are not fixed
but rather are flow dependent, in that their value depends on the usage of the
transportation system. Consider, for example, a transit line connecting two
points in an urban area. If many individuals choose to use this line, the buses
will get congested, the waiting time will increase, the probability of obtaining a
seat will be lower, and the driver is less likely to be friendly. The level of
service, then, will be lower with increased patronage even if the fare remains
fixed. In response, some patrons may drive instead of taking transit, others
may change the timing of the trips, and yet others may forgo the trip altoge-
ther. This situation can be analyzed by using two functions: (1) a performance
function that describes how the level of service deteriorates with increasing
volume; and (2) a demand function that describes how the volume of passen-
gers increases with improved level of service. These functions are defined for a
given situation in terms of fare structure, schedule, equipment, and so on. As
was the case with the aforementioned gas station example, the framework for a
performance/demand equilibrium analysis is set by fixing those service charac-
teristics that are under the operator’s control. In the case of the gas station,
this includes only the price. In the case of a transit line, these characteristics
include a range of variables.

The dependence of the level of service on the flow is a fundamental
characteristic of the transportation market. In the context of urban transpor-
tation, performance functions are rooted in the congestion phenomenon,
which causes increased delays and costs with increased flow. The focus of this
book is on the calculation of the demand/performance equilibrium in the
urban passenger transportation market. The notion of equilibrium in the re-
mainder of this book refers solely to this type of equilibrium.

The equilibrium in the urban transportation market is necessarily
reached over the urban network of streets and transit lines. To define the
notion of equilibrium over a transportation network, the network concept has
to be presented and discussed. That is the topic of the next section.

1.2 NETWORK REPRESENTATION

The term “network” is commonly used to describe a structure that can be
either physical (e.g., streets and intersections or telephone lines and exchanges,
etc.) or conceptual (e.g., information lines and people, affiliation relationships
and television stations, etc.). Each of these networks includes two types of
elements: a set of points and a set of line segments connecting these points.
This observation leads to the mathematical definition of a network as a set of
nodes (or vertices or points) and a set of links (or arcs or edges) connecting
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Figure 1.3 Directed network of links
and nodes.

these nodes.t Figure 1.3 depicts a network including five nodes connected by
10 links. Each link in this network is associated with a direction of flow. For
example, link 5 represents flow from node 3 to node 2, while link 6 represents
the reverse flow, 2— 3. This text deals exclusively with directed networks (in
which all links are directed).

Each network link is typically associated with some impedance that
affects the flow using it.} The units of measurement of this impedance depend
on the nature of the network and the link flows. Impedance can represent
electrical resistance, time, costs, utility, or any other relevant measure. When
the flow involves people, the term “level of service” is usually used instead of
“impedance.” (The magnitudes of these terms are the opposite of each other;
that is, a high level of service means low impedance.) Only links can be
associated with impedance. Nodes represent merely the intersection of links
and are not associated with any impedance to flow.

The networks discussed in this text are typically “connected.” In other
words, it is possible to get from any node to any other node by following a
path (or a route) through the network. A path is a sequence of directed links
leading from one node to another. The impedance along a path is the sum of
the impedances along the links comprising that path. Note that a pair of nodes
is usually connected by more than one path. For example, to get from node 2
in Figure 1.3 to node 4, the following paths (designated by the link numbers
along the path) can be used: 9; 6, 7; 6, 3, 4; 1, 2, 7; 1, 4. In large networks, the
number of paths connecting each pair of nodes can be extremely large.

Representation of the Urban Road Network

The focus of this text is on urban transportation. The roadway network
in an urban area includes intersections and streets through which traffic
moves. These elements can be translated naturally into a structure of nodes
and links (including impedance measures), respectively. For a measure to

tThe term “network” is used, then, to represent both a physical structure and its math-
ematical representation (known also as a graph).

{Formally, the difference between a network and a graph is that network links are associ-
ated with impedance, whereas the links of a graph are not (they only represent connection and/or
direction).
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properly represent link impedance it has to be a deterrent to flow. A particu-
larly relevant measure for links representing urban streets is the time required
to traverse the street. This impedance measure is discussed in detail in the last
part of this section.

The graph representation of a physical network is not unique. In other
words, there are many networks that can be used to represent the same physi-
cal structure. Consider, for example, the intersection shown in Figure 1.4. This
intersection can be represented simply as a node with the streets leading to
and from it represented by links connected to that node, as shown in Figure
1.5a. Note that a two-way street is represented by two opposite-direction links.
The impedance on the links entering the intersection (the approaches) repre-
sents the intersection delay as well as the travel time along the approaching
street. The impedance on the outbound links represents the travel time on the
streets in that direction and the delay at downstream intersections.

The drawbacks of this representation are twofold. First, it cannot be

A [b]

(a)

u y

- - ) i 1©)

> i

Figure 1.5 Network representation of the intersection in Figure 1.4: (a) repre-
senting the intersection as a node; (b) a detailed intersection representation.
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used to represent turning restrictions. Second, it assumes that all flow entering
the intersection from a particular direction will experience the same travel
time, regardless of where it is destined. Clearly, right turns are easier to execute
than straight-through movements, which, in turn, are easier to execute than
left turns. These different delays can be accounted for by a more elaborate
representation of the same intersection, shown in Figure 1.5b. In this figure the
single node representation of the intersection is replaced by a network of four
nodes and 10 links. Each permissible movement through the intersection is
represented by a separate link. (Note that the graph is not completely sym-
metric due to the lack of left-turning movements from the northern and south-
ern intersection approaches.) In this representation, each intersection move-
ment can be associated with the appropriate delay. Link 3 — 4, for example,
will be associated with left-turning delay that would be experienced by the
traffic turning from the eastern approach into the southern one. Link 3— 1, on
the other hand, will represent right-turning maneuvers for flow from the east
to the north, with the appropriate delay. In such a representation the links
leading into the intersection will be associated only with the travel time on the
incoming approaches, not with the intersection delay itself. The intersection
delay is captured by the links connecting the four nodes in the figure.

Representation of the Transit Network

The movement of vehicular traffic through streets and intersections is
not the only flow in the urban area; this text looks at the flow of transit
passengers as well. A transit link can be represented by a simple linear net-
work in which the transit stations (or bus stops) are represented by nodes and
the line-haul portion by links. Such a graph is shown in Figure 1.6a. The
impedance on each of the links in this network includes “in-vehicle” travel
disutility elements such as travel time. Other measures that are not associated
with the travel in the transit vehicle, however, serve also as travel impedance.
These include, for example, the waiting time at the station and the fare
charged. Furthermore, the transit station may be located away from the actual
destination, requiring a walking trip from the point of alighting to the destina-
tion node. Figure 1.6b depicts the transit network associated with the flow
between a particular origin node to a particular destination node. The loading
link, in this figure, corresponds to the waiting time and fare, while the unload-
ing link corresponds to the walking time. Note that in order for the various
types of links to be compatible with each other, the impedance on all of the
network links has to be expressed in the same units. If this were not the case,
the impedance of a path could not be calculated.

A representation of a complete transit network would include not only
loading and unloading links but also transfer links. The impedance on such
links would be associated with line transfer charges (which may be lower than
the fare at the start of the trip) and the waiting time at the transfer point.
Figure 1.6c depicts a network representation of a transit station serving two
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Figure 1.6 Transit-line representation:
(a) a representation including only the
“in-vehicle” movement; (b) a repre-
sentation including boarding and alight-
ing movements; (c) a detailed repre-
Loading sentation of a transit station, including
Link transfer, boarding, and alighting links.

lines (west — east and south— north). The station itself is represented by the
four nodes 1, 2, 3, and 4. Links 3— 1 and 2— 4 represent the continuation of a
trip on the same line and are therefore associated with zero impedance. (Note
that all four nodes represent the same physical facility.) Links 3—+4and 2— 1
represent the transfer movements between the two lines. The impedance on
these links include the transfer costs and delays expressed in appropriate units.
Node 5 represents both a source for trips (i.e, it is an origin node) and a
terminus for trips (i.e., it is also a destination node). This node is connected to
both transit lines by loading and unloading links (shown as dashed lines in
Figure 1.6¢c). It represents a set of trip origins and trip destinations which are
located in the vicinity of the transfer station.

Centroids and Connectors

The transportation planning process for urban areas is typically based
on a partition of the area into traffic zones. The size of each traffic zone can
vary from a city block to a whole neighborhood or a town within the urban
area. The number of traffic zones can vary from several dozens to several
thousands. Each traffic zone is represented by a node known as centroid (the
name stems from the practice of placing the node at the geometrical center of
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gravity of the traffic zone). The network representation of the urban area will
include many other nodes, representing intersections, bus stops, and other
transportation facilities. The centroids, however, are those “source” and
“sink” nodes where traffic originates and to which traffic is destined. (Node 5
in Figure 1.6¢ is a centroid.) Once the set of centroids is defined, the desired
movements over an urban network can be expressed in terms of an origin—
destination matrix. This matrix specifies the flow between every origin centroid
and every destination centroid in the network.

Figure 1.7 shows a traffic zone that is surrounded by four two-way
streets. The node in the middle of the zone is the centroid. It is connected to
the roadway network by special centroid connector links (known also as “con-
nectors” or “dummy links”). The centroid shown in the figure is a trip origin
and therefore all the connectors are directed away from the centroid and into
the nodes of the road network. Connectors directed toward the centroid would
be added if trips can also terminate there.

Each centroid represents an aggregation of all the actual origins and all
the actual destinations in its traffic zone. The centroid connectors represent the
ubiquitous street network within a traffic zone. If the actual origin and desti-
nation points are uniformly distributed in the traffic zone, the connectors can
be associated with the travel time between the geometrical centroid of each
zone and the appropriate nodes. If the distribution of origin and destination
points is not uniform, the connector travel times should be weighed accord-
ingly.

The centroids can be connected directly to nodes that are part of the
transit network. In this case, the connectors represent loading and unloading
links, as shown in Figure 1.6c. The impedance on the loading centroid connec-
tor represents the walking time to the station, waiting at the station, and the
transit fare. The impedance on the unloading connectors would represent the
walking time from the transit station to the centroids.

The level of detail at which an urban area is represented is determined in
large part by the size of the traffic zones. The analysis of the flows in the urban
area does not focus on the flows within each traffic zone; the centroid and
centroid connectors representation has to ensure only that the flows between
the traffic zones are correct. If the flows within a certain zone are of interest to
the transportation analyst, the zone under consideration should be divided

Links

Figure 1.7 Network representation of a
traffic zone, including a centroid node Centroid
and centroid connector links. Connectors
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into smaller zones and the road network between these zones modeled ex-
plicitly. Such detailed analysis is likely to be more accurate. Costs, however
(including both direct analysis costs and data collection costs), escalate dra-
matically as the number of traffic zones and the size of the network increase.
The size of the network to be analyzed is typically determined by this trade-off
between the required accuracy and the available budget.

Similar considerations apply to the level of detail in which the road
network itself is represented. Although it is important to show all the major
streets and arterials, smaller streets may not have to be represented at all. The
issue of network representation is as much an art as it is a science; practice
and experience are required to carry it out successfully.

Link Performance Functions

The travel impedance, or level of service, associated with the links repre-
senting an urban network can include many components, reflecting travel
time, safety, cost of travel, stability of flow, and others. The primary compo-
nent of this impedance, however, is travel time, which is often used as the sole
measure of link impedance. The reasons for using travel time in this context
are threefold. First, empirical studies seem to indicate that it is a primary
deterrent for flow. Second, almost all other possible measures of travel im-
pedance are highly correlated with travel time and thus exhibit the same
trends. Third, it is easier to measure than many of the other possible im-
pedance components. Generalized impedance, which combines several mea-
sures, can, however, be used and in the remainder of this book, the term
“travel time” can be understood as such a combined impedance. Furthermore,
impedance measures other than travel times can be used explicitly in some
parts of an urban network. For example, the appropriate impedance measure
for links in che transit network are transit (in vehicle) time, waiting time, fare,
and so on. To be compatible with the impedance over the vehicular traffic-
carrying links of an urban network, these impedance measures should all be
expressed in travel-time units. ¥

As mentioned in Section 1.1, the level of service (or impedance) offered
by many transportation systems is a function of the usage of these systems.
Because of congestion, travel time on urban streets and intersections is an
increasing function of flow. Consequently, a performance function rather than a
constant travel-time measure should be associated with each of the links repre-
senting the urban network. The performance function relates the travel time
(which, as mentioned above, may stand for generalized impedance) on each
link to the flow traversing this link.

A performance function for a typical approach to a signalized intersec-
tion is shown in Figure 1.8. This function captures both the time spent in

+The conversion coefficient should be rooted in travelers’ values. The estimation of such
coefficients is discussed in Chapter 13.
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Figure 1.8 Typical link performance function for an approach to a signalized
intersection.

traveling along the approach under consideration and the delay at the down-
stream intersection. The shape of the curve shown in the figure is typical of
performance functions for links representing urban network components.

The travel time at zero flow is known as the free-flow travel time. At this
point, a traveling car would not be delayed because of interaction with any
other car moving along the link. The only source of delay at this point is the
time associated with traversing the link and the expected delay associated with
the probability of being stopped by a red signal indication. As the flow in-
creases, the travel time monotonically increases since both the travel time
along the approach increases (because of vehicle interactions at higher traffic
densities) and the intersection delay increases (because of queueing phenome-
na) with the flow. Characteristically, the performance function is asymptotic to
a certain level of flow known as the capacity of the transportation facility
under consideration. The capacity is the maximum flow that can go through
any transportation facility. The performance function is undefined for higher
values of flow, since such flows cannot be observed. When the flow approaches
capacity, the queues at the intersection will start growing, clogging upstream
intersections and finally causing traffic to come to a halt.

The general shape of the performance functions is similar for links repre-
senting most types of urban streets. The physical characteristics of each street
(e.g., length, width, parking restrictions, turning pockets, or signal green time)
determine the exact parameters of the function for each street.

The centroid connectors are typically modeled as fixed travel-time links.
In other words, the travel time on the connectors does not vary with the flow
since these links represent a ubiquitous local street network and not a particu-
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lar facility. Similarly, loading and unloading links represent time and cost
components that do not vary with the flow.

It is important to remember that the physical network and its graph
representation do not have to be similar. As shown in later chapters, links can
be used to represent many types of flow, some of which do not correspond to
physical movements. For example, in Chapter 6 the individuals who choose
not to travel at all are represented as a flow on an imaginary link added to the
network. It is always true, however, that each link represents a distinct flow.

The next section discusses equilibrium over urban transportation net-
works, building on the system analytic approach and the equilibrium frame-
work introduced in Section 1.1.

1.3 EQUILIBRIUM
OVER URBAN TRANSPORTATION NETWORKS

The notion of equilibrium in the analysis of urban transportation networks
stems from the dependence of the link travel times on the link flows. Assume
that the number of motorists who wish to travel between a given origin point
and a given destination point is known. Furthermore, assume that these points
are connected by several possible paths. The question of interest here is how
these motorists will be distributed among the possible paths. If all of them
were to take the same path (which may initially be the shortest one in terms of
travel time), congestion would develop on it. As a result, the travel time on this
path might increase to a point where it is no longer the minimum travel-time
path. Some of these motorists would then use an alternative path. The alter-
native path can, however, also be congested, and so on.

The determination of the flows on each of these paths involves a solution
of a demand/performance equilibrium problem. The flow on each link is the
sum of the flows on many paths between many origins and destinations. A
performance function is defined independently for each link, relating its travel
time to this flow. The demand for travel, however, is rooted in motorists’
behavior and is not defined for each link separately. Instead, it specifies how
motorists choose among the alternative paths (routes) connecting each origin—
destination (O-D) pair. This dichotomy in the definition of the performance
and the demand functions gives this performdnce/demand equilibrium analysis
its “systems” nature. In other words, this is why no link, path, or origin—
destination pair can be analyzed in isolation.

This section discusses the route choice rule and the associated definitions
of equilibrium used in this text.

Definitions of Equilibria

This text analyzes a variety of urban network equilibrium problems,
including both the transit and automobile mode and encompassing several
possible travel decisions. The basic problem, however, is presented here for a
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simplified case, including a network representing only the automobile flows.
The only travel choice examined here is the motorists’ choice of routes be-
tween their origin and their destination. This problem can be put as follows:

Given:
1. A graph representation of the urban transportation network

2. The associated link performance functions
3. An origin—destination matrix

Find the flow (and travel time) on cach of the network links.

This problem is known as that of traffic assignment since the issue is how to
assign the O-D matrix onto the network. The resulting link flows are then
used to calculate an array of measures, which can be used, in turn, to evaluate
the network. Particular designs of transportation infrastructure or transpor-
tation control policies usually enter the analysis through the specification of
the network itself and the performance functions.

To solve the traffic assignment problem, it is required that the rule by
which motorists choose a route be specified. As explained above, this rule can
be viewed as the function or the procedure that specifies the demand for travel
over paths. The interaction between the routes chosen between all O-D pairs,
on the one hand, and the performance functions on all the network links, on
the other, determines the equilibrium flows and corresponding travel times
throughout the network. '

It is reasonable to assume that every motorist will try to minimize his or
her own travel time when traveling from origin to destination. As explained
above, this doss not mean that all travelers between each origin and destina-
tion pair should be assigned to a single path. The travel time on each link
changes with the flow and therefore, the travel time on several of the network
paths changes as the link flows change. A stable condition is reached only
when no traveler can improve his travel time by unilaterally changing routes.
This is the characterization of the user-equilibrium (UE) condition.

Since individual motorists can be expected to behave independently, the
UE situation ensures that at this point there is no force that tends to move the
flows out of the equilibrium situation. Consequently, this point will be stable
and, in fact, a true equilibrium.

The user-equilibrium condition, however, is not the only possible defini-
tion of equilibrium. The assumption that each motorist chooses the minimum-
travel-time route may be reasonable in some cases, but it includes several
presumptions that cannot always be assumed to hold even approximately. For
example, the UE definition implies that motorists have full information (i.c.,
they know the travel time on every possible route) and that they consistently
make the correct decisions regarding route choice. Furthermore, it assumes
that all individuals are identical in their behavior. These presumptions can be
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relaxed by making a distinction between the travel time that individuals per-
ceive and the actual travel time. The perceived travel time can then be looked
upon as a random variable distributed across the population of drivers. In
other words, each motorist may perceive a different travel time, over the same
link. Equilibrium will be reached when no traveler believes that his travel time
can be improved by unilaterally changing routes. This definition characterizes
the stochastic-user-equilibrium (SUE) condition.

The stochastic user equilibrium is a generalization of the user-
equilibrium definition. If the perceived travel times are assumed to be entirely
accurate, all motorists would perceive the same travel time and the stochastic
user equilibrium will be identical to the (deterministic) user equilibrium. In
other words, the flow patterns resulting from both models would be identical.

The definitions of equilibria given above are not easy to use in an oper-
ational manner to solve for equilibrium flow patterns. To be useful, the equi-
librium definitions have to be characterized and formulated mathematically.
The following section discusses the user equilibrium, while the more general
stochastic user equilibrium is treated only in Part IV.

An important point, however, should be mentioned here with regard to
both types of equilibria. The demand for urban travel is derived from the
pattern of activity in the urban area. The timing and locations of these activi-
ties mean that travel demand is not uniform throughout the day. Steady-state
equilibrium analyses of the type discussed here, however, are applicable only if
the flows can be considered stable over the period of analysis. Consequently,
transportation planners analyze urban transportation systems for certain time
periods such as the “morning peak,” “evening peak,” or “midday,” depending
on the purpose of the analysis. The origin—destination flows within each of
these respective periods is considered constant in order for steady-state analy-
ses to apply. The larger the period of analysis, the less accurate this assump-
tion is. The period of analysis cannot be very small, however, since each such
period has to be appreciably longer than the typical duration of trips at this
time.

A Simple User-Equilibrium Example

Consider the two-link network shown in Figure 1.9a. This network rep-
resents one origin—destination pair connected by two alternative routes. Let ¢,
and t, represent the travel time on links 1 and 2, respectively, and let x; and
x, represent the traffic flow on these links. The total origin—destination flow is
designated by g, where

q=Xx; + X [1.1]

The performance functions on these links t,(x,) and t,(x,) are shown in Figure
1.9b. For each link, the performance function gives the travel time on that link
as a function of the flow on the link.

Assume now that the trip rate between O and D is very small. In other



Chap. 1 Urban Transportation Networks Analysis 21

Link 1

t,(x,) (X))

(b)

Figure 1.9 Equilibrium in a simple net-
work: (a) a two-link network ; (b) the two
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words, g is very small. If all motorists are trying to minimize their own travel
time, each of the g motorists should choose to travel over link 1. As shown in
the figure, this link is associated with a lower free-flow travel time than link 2.
If q is small, the increased delay due to the traffic on link 1 is not sufficient to
increase the travel time on this link even to the point where it is equal to the
free-flow travel time on link 2. Thus, all ¢ motorists will use link 1 and no one
will use link 2. This is an equilibrium situation since none of the motorists
using link 1 has an incentive to switch routes to the longer link. Such an
equilibrium will hold as long as g < ¢’, where ¢’ is the flow that causes the
travel time on link 1 to equal the free-flow travel time on link 2. At this point,
an additional motorist may choose either link. If the additional motorist
chooses link 2, the travel time on it will increase and the next motorist will
choose link 1. If on the other hand, the first motorist (above ¢') chooses link 1,
the next one will choose link 2.

Looking at the flow of traffic as a continuous flow, it is clear that beyond
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the point g = ¢, equilibrium can be maintained only if the travel time on both
links is equal. Beyond this point both links are used, and if the travel times are
not equal, some motorists can change route and lower their own travel time.
The route-switching process will not occur only if the travel time on both
routes is equal, giving motorists no incentive to switch.

~ The two characterizations of equilibrium that can occur in this two-link
example (the first for g < ¢’ and the second for g > g') give rise to an oper-
ational definition of user equilibrium over transportation networks:

UE Definition. For each O-D pair, at user equilibrium, the travel time
on all used paths is equal, and (also) less than or equal to the travel time that
would be experienced by a single vehicle on any unused path.

This definition means that at equilibrium, the paths connecting each
O-D pair can be divided into two groups. The first group includes paths that
carry flow. The travel time on all these paths will be the same. The other
group includes paths that do not carry any flow. The travel time on each of
these paths will be at least as large as the travel time on the paths in the first
group.

Using this definition, the two-link example in Figure 1.9 can now be
solved for any value of g. The assignment of any amount of flow that is less
than ¢’ is obvious—it should all be assigned to link 1. The only problem is to
ensure that the traffic assignment is such that beyond the point of g = ¢’, both
links are assigned at a rate that keeps the travel time on these links equal. If
the equilibrium travel time, ¢t, between the origin and the destination is known
(for the case in which g > ¢), the equilibrium definition above means that
t =t, = t,. Consequently, the appropriate link flows can be determined by the
inverse link performance functions [i.e., x; = t; !(¢) and x, = t; '(t)]. Graphi-
cally, this determination can be accomplished by entering the link performance
curves horizontally, given ¢, as shown in Figure 1.9c. This method is applicable
at any value of t, even those associated with g < g’. The problem then is to
determine t.

The equilibrium travel time can be determined by creating a new “per-
formance curve” which depicts the O-D travel time as a function of the O-D
flow. This curve can be constructed by summing up the link performance
function horizontally, as shown in Figure 1.10. The curve t(g) in this figure is
an O-D performance function giving the equilibrium O-D travel time as a
function of the total O-D flow. The construction of the O-D performance
function in this fashion ensures that for each value of the travel time, the O-D
flow is the sum of the flows on the individual links. Once this curve is con-
structed, the equilibrium travel time can be determined by simply entering this
function with the O-D flow. Given the equilibrium travel times, the flows on
the individual links can be determined graphically, as shown in the figure.
Note that the O-D performance function coincides with link 1 performance -
function for g < ¢'. This means that for ¢ < ¢’ the equilibrium travel time will
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Figure 1.10 The O-D performance function, #(g), is used to find the O-D travel
time, ¢ and equilibrium flows, x, and x,.

be given by the travel time on link 1. The travel time on link 2 will be higher
for this range of O-D flow, as required by the user equilibrium definition.

The graphical method used to solve this small two-link network example
cannot be used to solve large networks. In such networks, the number of paths
connecting each O-D pair may be so large that it will be prohibitively expen-
sive to enumerate them all, even by using modern computers. Furthermore,
the flow traversing each link results from the assignment of trips between
many origins and many destinations. Consequently, as mentioned before, the
entire network has to be solved simultaneously.

Outline

The methods used to determine the equilibrium flows and travel times
described in this book are based on nonlinear optimization techniques. Part II
includes a review of the mathematical background needed for such analysis. At
the same time, it presents an application of these methods to the formulation
and solution of user equilibrium problems over large networks.

Part III extends the basic user-equilibrium framework in two main di-
mensions. First, it includes travel choices other than route choice in the analy-
sis. These include the choice of mode of travel, trip destination, and trip
frequency. Second, it applies the analysis to cases in which the performance of
each link depends on the flows on several (and possibly all) of the network
links. ' .
Part 1V extends the analysis in yet another dimension by removing a
number of the simplifying assumptions leading to the definition of the user
equilibrium. This part of the book discusses the concept of stochastic user
equilibrium, which was mentioned earlier. It looks at the process of route
choice in the context of random utility theory, applying appropriate choice
models to this process.

The last part of the book (Part V) focuses on the data needed for equilib-
rium analysis of urban transportation systems. It explains how O-D matrices
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can be derived and presents the necessary background in traffic engineering
needed for the derivation of link performance functions.

1.4 SUMMARY

The problem addressed in this book is that of describing the distribution of
traffic and transit passenger flows through an urban transportation network.
The characteristics of the network, in terms of physical dimensions, control
strategies, and operations are assumed to be fixed during the analysis period.
Similarly, the pattern of activities that generates the trips in the urban area is
assumed to be constant. The analysis offered is therefore descriptive in nature.
It should be used for studying various scenarios, each corresponding to a
possible state of any one (or a combination of) the aforementioned constant
characteristics.

The approach used to solve this problem is based on the notion of
equilibrium. Unlike economic equilibrium between supply and demand, the
equilibrium discussed here is between performance and demand. Instead of
being determined in the quantity/price space, the equilibrium under consider-
ation is being determined in the flow/level of service (or flow/impedance)
space. The flow in this case is expressed in terms of the number of travelers (or
vehicles) using each component of the transportation network per unit time,
while the level of service is expressed in terms of the travel time borne by these
travelers. The interdependencies between the components of the network
necessitates a system-based analytical approach in which the equilibrium flows
and travel times throughout the network have to be determined simultaneous-
ly.

The solution approaches are developed with regard to a network repre-
sentation of the physical structure of streets and transit lines. The network
representation includes nodes and directed links. Each link is associated with a
single flow variable and a measure of travel time. Nodes are not associated
with travel time or any other impedance measure.

The graph representation of the urban network is not unique in that
there are many graphs that can represent the same network. The choice of
representation depends on the level of detail at which the network is modeled,
which, in turn, is a function of the available data and the analysis budget.

Given the origin—destination trip rates, the demand for urban travel can
be formulated in terms of the rule by which motorists (and passengers) choose
a route from their origin to their destination. Different assumptions regarding
these choice mechanisms lead to different equilibrium flow patterns. All route-
choice models, however, assume that motorists minimize their travel time
through the network. The difference between the two types of equilibria dis-
cussed in this book is that user equilibrium assumes that motorists know all
link travel times with certainty. Stochastic user equilibrium models are based
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on the assumption that each motorist may perceive a different travel time and
act accordingly.

1.5 ANNOTATED REFERENCES

The notion of demand/performance equilibrium over urban networks is pre-
sented in several transportation planning textbooks, including Morlok (1978)
and Manheim (1979). In particular, the early work of Beckman et al. (1956)
contains many important conceptual developments. These authors trace a
description of an equilibration process over a simple traffic network to Knight
(1924). A discussion of transportation networks and their representation is
given by Potts and Oliver (1972), Newell (1980), and others.

The operational definition of the user equilibrium given in Section 1.3
was suggested by Wardrop (1952). The concept of stochastic user equilibrium
was developed and formalized by Daganzo and Sheffi (1977).

1.6 PROBLEMS

1.1. Consider a raffle in which the prize money is known and the ticket price is
constant. The number of people buying a ticket is a function of the winning
probability. This probability, in turn, is a function of the number of people buying
tickets. Study this situation in the framework of a demand/performance equilibri-
um. Show, graphically, the equilibrium point and the forces that push toward this
point.

1.2. Find the user equilibrium flow patterns and the equilibrium travel time for the
network described in Figure P1.1. The performance functions are

t1=2+x%
t2=1+3x2
t3=3+x:;

where z, and x, denote the travel time and flow, respectively, on link a (where
a =1, 2, 3). The origin—destination trip rate is 4 units of flow going from node 1 to
node 3.

1 .
Figure P1.1

1.3. The network in Figure P1.2 includes many links connecting the origin node and
the destination node. The performance curve on each link is linear, that is,

t,= A, + B,x,
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£\

Q)

(2)
B Figure P1.2

where A, and B, are constants and, as in Problem 1.2, t, and x, represent the travel

time and flow, respectively, on link a. The origin—destination trip rate is g.

(a) Assuming that you know that at equilibrium, all links in this network carry
flow, develop an expression for the flow on each link.

(b) How would you find the flow on each link in cases where it is not clear that all
links are used at equilibrium (i.e., only a subset of the links may be used)?



User
Equilibrium

Part Il formulates and solves the standard user-equilibrium problem. The problem
is to find the set of flows that corresponds to the user-equilibrium conditions set
forth in Chapter 1. This part contains four chapters. Chapter 2 reviews, in short,
some concepts in mathematical programming. These concepts are used in Chapter
3 to formulate the equilibrium problem as a mathematical program. Chapter 4
reviews algorithmic approaches to the solution of mathematical programs, and
Chapter 5 concentrates on the solution of the user-equilibrium program.

27



Basic Concepts
in Minimization Problems

This chapter reviews some concepts related to the formulation and solution of
mathematical minimization programs. The focus of the discussion is on the
conditions that characterize the solution of such programs and the conditions
under which a solution may be unique.

In solving a mathematical program, the problem is to choose the values
of a set of I variables, x;, x5, ..., X;, that minimize a function (usually termed
the objective function) z(x,, ..., x;), yet comply with certain constraints. Each
constraint can be expressed as an inequality condition on some function,
g(xq, ..., xp), of the variables; the set of all possible values of x,, ..., x; that
comply with all the constraints is known as the feasible region. A general
minimization program with J constraints can be written (in standard form) as

min z(xy, ..., X;)
subject to
g1(xys .05 X)) 2 by

ga(X2, ..., %) 2 b,

gix1, ..., X)) = by

where g,(x;, ..., X;) > b; denotes the jth constraint on the values of the vari-
ables. These equations can be simplified by using vector notation. Accordingly,
let x denote the array (vector) of decision variables, that is, x = (xy, ..., X).

28
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Using such notation, the program above can be written as

min z(x) [2.1a]
. subject to
g;ix)=b;; j=1,...,J [2.1b]

This is the standard form used in this text to write minimization programs.
Note that all constraints are specified using a “greater than or equal to” sign.
Constraint of the type “less than or equal to” can be converted to this stan-
dard form by multiplying them by —1. Equality constraints of the type
g;(x) = b; can be expressed as the pair of constraints g;(x) > b; and g;(x) < b;
(where the latter can be multiplied by — 1 to conform to the standard form).

The solution to this program, x*, is a feasible value of x that minimizes
2(x), that is,

z(x¥) < z(x) for any feasible x [2.2a]
and
gx*)=b;, Vje g [2.2b]

where £ is the set of constraint indices (1, 2, ..., J)}. Condition [2.2a] calls for
the solution, x*, to have the lowest possible value of the objective function,
while Eq. [2.2b] ensures that this solution satisfies the constraints. Note that
the “less than or equal to” condition in Eq. [2.2a] means that there may be
some value of x other than x* which solves the program expressed in Egs.
[2.1] (hence the aforementioned concern with the conditions for uniqueness of
the solution). Note also that there may be no value of x that satisfies all the
constraints (i.c., Egs. [2.2b] hold for no x), in which case the program has no
solution. _

In the following chapter and in the remainder of this book, it is generally
assumed that there is always at least one value of x that satisfies the con-
straints. Furthermore, this book deals only with programs that possess a finite
minimum which occurs at a finite value of x. To ensure the existence of such a
minimum, these programs have to satisfy certain regularity conditions.} In
addition, this book deals only with objective functions and constraints that are
all continuously differentiable.

This chapter focuses on the characteristics of the optimal solutions to
mathematical programs. Three topics are each discussed separately: single-
variable minimization programs, multivariable programs, and some special

1The notation “V” means “for every.” In this case, “V j € #” means “for every j in the set
F” (e, j=1, 2,...,J). When it is clear what the relevant set is, such notation is usually
shortened in this book to “V j”, meaning “for every j in the relevant set.”

{The objective function has to be continuous over the feasible region, which has to be
closed and bounded.
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cases of multivariable programs that are used frequently in the analysis of
network equilibrium programs.

2.1 PROGRAMS IN ONE VARIABLE

The discussion of single-variable minimization is divided into sections on un-
constrained and constrained problems. For each of these cases, included are
discussion of the first-order conditions, which characterize the solution, and of
the second-order conditions, which deal with its uniqueness. In both cases, it is
assumed that the existence and smoothness conditions mentioned above hold
(either for any value of the argument, in the case of an unconstrained program,
or for the feasible values, in the case of constrained programs).

Unconstrained Minimization Programs

It is well known from elementary calculus that the necessary condition
for a differentiable function in one variable, z(x), to have a minimum at x = x*
is that the derivative of z(x) evaluated at x* equals zero. In other words,

dz(x¥) _

- [2.3]

This is a first-order condition (involving only first derivatives) for a minimum.}
If there is a minimum at x*, this condition must hold. As demonstrated in
Figure 2.1, however, the first-order condition is not sufficient to ensure that x*
is a minimum of z(x). In this figure dz(x)/dx = 0 for four values of x, namely
x=a,x =b, x =c, and x = d; all of which are stationary points of z(x). Note
that x = a and x = d are local minima (i.e., they minimize the function in their
immediate vicinity), while x = b is a point of inflection and x = ¢ is a (local)
maximum.

To prove that a stationary point (such as x =a in Figure 2.1) is a
minimum, two characteristics have to be demonstrated: (1) that it is a local
minimum and not a local maximum or an inflection point, and (2) that it is a
global minimum. In other words, the value of z(x) at x* is lower than z(x) at
any other x (including, for example, all the other local minima, such as x = d
in Figure 2.1).

A function with a single minimum is called ditonic or unimodal.} A
function is ditonic if it is strictly decreasing to the left of the minimum and
strictly increasing to the right. Thus, if a function is ditonic, its stationary point
is a global minimum.

tHere and later in the book, dz(x*)/dx denotes the derivative of z(x) evaluated at x*.

1The term “unimodal™ is sometimes reserved for functions with a single maximum and the
term “ditonic” to functions with a single minimum (i.e., the negative of a unimodal function is a
ditonic function). In this book these terms are used interchangeably to denote a function with a
single minimum.
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Figure 2.1 Stationary points of z(x).

A sufficient condition for a stationary point to be a local minimum is for
the function to be strictly convex in the vicinity of the stationary point. Intu-
itively, strict convexity means that the function is “heavy in the middle,” as
illustrated in the vicinity of x = a and x = d of Figure 2.1. Formally, strict
convexity means that a line segment connecting any two points of the function
lies entirely above the function. In other words, a function is strictly convex if

z[0x, + (1 — O)x,] < 0z(x,) + (1 — 0)z(x,) [2.4a]

for any two distinct points x; and x, and for any value of 8 where 0 < 0 < 1.
These relationships are shown in Figure 2.2a for a strictly convex function.
(Note that this condition does not require that the function under consider-
ation be differentiable.) Alternatively, strict convexity of differentiable func-
tions can be determined. by testing whether a linear approximation to the
function always underestimates the function. Thus z(x) is strictly convex at x,
if and only if

dz(x,)
dx

for any point x, that is not equal to x,. This condition is demonstrated in
Figure 2.2b. Finally, if a function is twice differentiable in the vicinity of a
stationary point, the strict convexity condition is equivalent to requiring that
the second derivative of z(x) at x* be positive, that is,

d?z(x*)

dx?

z(x;) + (x3 — xy) < 2(x5) [2.4b]

>0 [2.4c]

Strict convexity can thus be defined by the line segment condition [2.4a], by
the linear approximation condition [2.4b] (for continuously differentiable
functions), or by the second derivative condition [2.4c] (for twice-continuously
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z(x)

(a)
Bz(x)+ (1-Blzlxg b ——~Nc== ,
2[0-x,+ 1-8) x, ] [---—= = I 5
L ! .
x] x2
ex] + “-e) Xq
" (b)

z{x,) |-

dz(x,) (xp-x,)

dx

z(x) *

Figure 2.2 Strict convexity can be demonstrated (a) by showing that a line segment
connecting any two points lies entirely above the function, or (b) by showing that a
linear approximation always underestimates the function.

differentiable functions). If a function is strictly convex in the vicinity of a
stationary point, this point is a local minimum.

If a function includes more than one local minimum, it is usually difficult
to demonstrate that a particular local minimum is also a global one. Doing so
may require identification of all the local minima (a process that may involve
repeated solutions) and a comparison of the objective function values at these
points. Such a task can be very difficult and is sometimes impossible. If,
however, x* is the only local minimum of z(x), then, naturally, it is also a
global minimum. To demonstrate that a local minimum is unique, it is suf-
ficient to show that z(x) is convex for all values of x (i.e. that it is globally
convex).

Convexity means that the inequality in Eq. [2.4a] is replaced by a “less
than or equal to” sign, meaning that a line segment never lies below the
function. Similarly, convexity means that a linear approximation to the func-
tion never overestimates it and that the second derivative is nonnegative.

To understand second-order conditions better, note that a function z(x)
can have a unique minimum and not be globally convex, and that convexity
alone does not guarantee the uniqueness of the minimum. Figure 2.3 illustrates
three possible situations: In Figure 2.3a z(x) is convex, but it is not strictly
convex in the vicinity of x*—this function does not have a unique minimum.
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Figure 23 Convexity and unimodality. (a) z(x) is convex but not strictly convex;
its minimum is not necessarily unique. (b) z(x) is not convex but it is strictly convex
at the vicinity of x*; it is also ditonic and thus x* is a unique minimum. (c) z(x) is
convex everywhere and strictly convex at the vicinity of x*, which is the unique

Figure 2.3b depicts a case in which z(x) is not convex even though it is strictly
convex in the vicinity of x*. This function is ditonic and thus its only station-
ary point is also its unique minimum. In general, however, for a function of
this shape it would be hard to demonstrate the uniqueness of the minimum
because the function is not convex. Figure 2.3c illustrates a convex function
that is strictly convex in the vicinity of its unique minimum, x*.

In summary, then, it is sufficient to show that a function z(x) is strictly
convex at x = x* and convex elsewhere in order to establish the fact that x*
minimizes that function. A necessary condition, however, for x* to be a mini-
mum is for the first derivative to vanish at that point. (This is the first-order
condition for a minimum.)

This review of programs in a single variable is extended in the next
section to constrained minimizations. Again, the focus of the discussion is on
the first- and second-order conditions for a minimum.

Constrained Minimization Programs

In constrained minimization it is possible to have a minimum where the
first derivative does not vanish. As a result, the first-order conditions have to
be generalized in order to include this possibility. Consider, for example,
Figure 2.4, showing the function z(x) defined over the feasible region
a < x<a" In the first case (Figure 2.4a), the minimum point is internal
(inside the feasible region) and the condition dz(x*)/dx = 0 holds, while in
Figure 2.4b the minimum point is on the boundary, at x = a'. Clearly,
dz(a')/dx # 0.

When the minimum is on the boundary of the feasible region, however,
the following observation can be made: If the constraint on which the solution
lies (the binding constraint) is of the type x > (-), then z(x) must be increasing

<V
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Figure 24 Constrained minimum: (a) internal minimum—dz(x*)/dx = 0 inside the
feasible region; (b) minimum on the boundary of the feasible region—the binding
constraint is x > a and dz(x)/dx > 0; (c) minimum on the boundary—the binding
constraint is x < b and dz(x*)/dx < 0.

(or more precisely nondecreasing) at x*, as is the case in Figure 2.4b. If, on the
other hand, the binding constraint is of the type x < ('), then z(x) must be
decreasing (actually, nonincreasing) at x*, as in the case shown in Figure 2.4c.

To characterize these situations mathematically in a statement of first-
order conditions, the problem depicted in Figure 2.4 is first written in a
standard form, as follows (see Eqs. [2.1]):

min z(x) [2.5a]

subject to
x=>d [2.5b]
-x=—-a’ [2.5¢]

where constraints [2.5b] and [2.5c] are expressed as g;(x) = b; [in this case
g:(x) = x and b, = a', while ¢g,(x) = —x and b, = —a"].

When the constraints are expressed in standard form, the aforemen-
tioned observation about the slope of z(x) at x* means that the derivative of
z(x) at x* and the derivative of the binding constraint at this point [dg(x*)/dx]
will always have the same sign (or their product will be zero, that is, they will
never have opposite signs). This observation can be used to extend the first-
order conditions because it holds whenever a minimum occurs on the bound-
ary of the feasible region as well as for an unconstrained solution. In the
example given in Figure 2.4b, this condition can be verified since

dg, (%) _ |
dx
and from the figure
*
dz(x*) -0

dx
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whereas for Figure 2.4c,

dg,(x* dz(x*
49:0%) _ | ana XD g

dx dx
Since both derivatives are scalars, the condition of same signs can be written

as

dz(x*) dg;(x*)
dx “i dx

foreitherj=1 or j=2 [2.6]

where u; is a nonnegative scalar and g;(x) is the binding constraint (which can
be either the first or the second one).

In order to develop a set of first-order conditions that would apply in all
cases (i.e., whether the solution is internal or on the boundary of the feasible
region), define a nonnegative variable, u;, for each of the constraints (not only
the binding ones). If the jth constraint is not binding [i.e., if g;(x*) > b;], let
u; = 0. In other words, the condition

[bj - gj(x*)]”j =0

holds for all the constraints j € #. (It means that either u; = 0, in which case
the jth constraint may or may not be binding, or u; > 0 and the jth constraint
is binding.) Using this convention, conditions [2.6] can be replaced by the
condition

dz(x* dg J(x*)

Ra

where u; is a nonnegative scalar and the sum includes all the constraints.}
Note that this equation generalizes the condition for an unconstrained mini-
mum (see Eq. [2.3]). An unconstrained minimization problem can be looked
upon as a constrained problem with an internal minimum point. In such a
case, all u; = 0 (since none of the constraints is binding) and the condition
above simply states that dz(x*)/dx = 0

In summary, then, the first-order conditions for a constrained minimum
are

dz(x*) dg j(x*)

[2.7a]

~M

u; >0, uj[bj—gj(x*)] =0, g;(x*)=b; forj=1,...,J

J

[2.7b]

These conditions mean that the derivative of the function at the minimum and

TA notational convention used throughout this text is to omit the complete summation
notation whenever the summation goes over all the indices (or subscripts) in the relevant set. In
this expression “Y" " is equivalent to “YJ_, " or “3 ;. ;7
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the derivatives of the binding constraints at the minimum have the same signs
and that the minimum point is (of course) feasible. Equations [2.7] thus depict
the general form of the first-order conditions for the minimum of a single-
variable function (see Problem 2.5).

The second-order conditions for a constrained minimum are similar to
those for the constrained case, but with one condition added. As in the un-
constrained case, strict convexity of z(x) in the vicinity of x* (where Egs. [2.7]
hold) would ensure that x* is a local minimum; convexity, however, is not
quite sufficient to guarantee the uniqueness of that minimum. Consider, for
example, the situation depicted in Figure 2.5, where a strictly convex function
z(x) is constrained to the following region: either 0 < x < aor b < x < c. This
function depicts two local minima at x = a and at x = b even though z(x) is
strictly convex everywhere. Again, proving that a local minimum is also a
global one is difficult in the presence of other minima. A condition excluding
situations such as the one depicted in Figure 2.5 is therefore added to the
uniqueness requirements. This condition requires that the constraints define a
convex set of feasible points, or in other words, that the feasible region be
convex. The convexity of the feasible region means that a line segment connec-
ting any two points of that feasible region must lie entirely within the region.
This condition ensures the existence of only one minimum, which must neces-
sarily be the global minimum. It obviously does not hold for the problem
illustrated in Figure 2.5, which does not have a unique minimum.

In conclusion, then, the necessary conditions for a minimum are given by
Eqgs. [2.7]. The sufficient conditions include strict convexity in the vicinity of
the minimum point (this guarantees that it is a local minimum) and convexity
of both the objective function and the feasible region (this guarantees that
there are no other local minima).

This concludes the discussion of single-variable programs. The concepts
introduced in this section are expanded in the following section to the multi-
variable case.
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Figure 2.5 Two local minima for a strictly convex function bounded by a con-
straint set that is not convex.
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2.2 MULTIDIMENSIONAL PROGRAMS

In multidimensional problems, the objective function is given by z(x), where
X = (x4, ..., X;) is a vector of length I (i.e., it is an array of variables x;, x,, ...
up to x;). The constraints are given by g;(x) > b;, V j € #, where # is the
constraints index set (1, 2, ..., J) and b; is a scalar. Again this discussion of
multivariable minimization programs deals separately with unconstrained and
constrained problems, including a review of both first- and second-order con-
ditions in each case. As in the preceding section, the regularity conditions on
z(x) and g;(x) are assumed to hold, and a solution therefore always exists.

Unconstrained Minimization Programs

If the function to be minimized is unconstrained, the first-order condition
for a minimum at x = x* is that the gradient of z(x) vanish at x*. The gradient
of z(x) with respect to x, V, z(x), is the vector of partial derivatives, that is,

0z(x) 0z(x) 6z(x))

ax,  0x, 0 oy

V,z2(x) = ( [2.8]
The subscript x in the gradient notation is usually omitted if the variable with
respect to which the partial derivatives are taken is obvious. At every point x,
the gradient aims in the direction of the steepest (local) increase in z(x); thus
the gradient is the directional derivative of z(x) in the direction of the steepest
ascent. As mentioned above, the first-order condition for a minimum is

Vz(x*) =0 [2.9a]

meaning that each component of the gradient (see Eq. [2.8]) has to be equal to
zero. In other words,

) _
ox;

This condition is entirely analogous to the condition dz(x*)/dx = 0 used in the
single-variable case. It is only a necessary condition for a minimum; that is, it
establishes the fact that z(x) has a stationary point at x*,

As an example of the application of the first-order conditions, consider
the function z(x,, x,) where

0 fori=1,2..,1 [2.9b]

2(xy, X3) = x + 2x3 + 2x,;x, — 2x, — 4x, [2.10]
The gradient of this function at every point (x,, x,) is given by
Vz(x,, x5) = [(2x; + 2x; — 2), (4x; + 2x, — 4)] [2.11]

The stationary point is where Vz(x,, x,) = 0, which is the value of x that
solves the equations

2x; +2x,—2=0 [2.12a]
2x; +4x, —4=0 [2.12b]
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The solution of these equations is x}¥ =0 and x§¥ = 1. Thus x*=(0, 1) is a
stationary point of z(x,, x,) in Eq. [2.10].

To show that a stationary point, x*, is a local minimum, it is sufficient to
demonstrate that z(x) is strictly convex in the vicinity of x = x*, as was the
case with the single-dimensional function. The conditions for strict convexity
in the multidimensional case parallel those given in the preceding section for
single-variable functions (see Eqs. [2.4]). If a line segment lies entirely above
the function or if it is underestimated by a linear approximation, the function
is strictly convex. Thus the strict convexity condition is

z[0x' + (1 — 0)x"] < 0z(x') + (1 — B)z(x") [2.13a]
where x’ and x” are two different values of x, and 6 is a scalar between zero
and 1, ort
Z(x’) + Vz(x') - (x" — x)T < z(x") [2.13b]
where the superscript T denotes the vector (or matrix) transposition operation.
Alternatively, a function z(x) can be shown to be strictly convex if some
conditions regarding the second derivatives of z(x) hold. To express these
conditions mathematically, the second derivatives are usually arranged in a
(symmetric) matrix form. [This matrix is known as the Hessian of z(x)]. The
Hessian, denoted by V2z(x), is given by
[ 922(x) 2x)  0*2(x) ]

ox? 0x, 0x, 0x, 0x,

0%z(x)  d*z(x)
dx, 0x, 0x3

Viz(x) =

0%z(x) o 9%2x)
| 9x; 0x, ox}?

The mathematical condition which ensures that z(x) is strictly convex is that
the Hessian, V?2(x), is positive definite.f If the Hessian is positive definite at
x*, this point is a local minimum of z(x). As in the single-dimensional case, it is
required that a function be convex everywhere in order to ensure that it has
but one local minimum.§

+This condition can be written in expanded notation as follows:

0z(x}, ..., xp)
0x;

2xy, . x)+ Y (x{ — x}) < z(x}, ..., x7)
i

1A matrix, H, is positive definite if the product h - H - h” is positive for any nonzero vector,
b. A symmetric matrix (such as the Hessian) can also be shown to be positive definite if and only if
its eigenvalues are positive or if its leading principal minor determinants are positive.

§Convexity is associated with a positive-semidefinite Hessian. A matrix H is positive
semidefinite if and only if h - H - h” > 0 for any nonzero vector h. Conditions [2.13a and 2.13b]
indicate convexity if the “less than” sign is replaced by a “less than or equal to” sign.
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Figure 2.6 Strictly convex function in two dimensions.

It is important to note that the aforementioned conditions for a matrix
to be positive definite means that any diagonal matrix (i.e., a matrix in which
only the elements along the diagonal are nonzero) with positive elements is
positive definite. Many of the objective functions discussed in this book have
diagonal Hessians and it is therefore only necessary to check the signs of the
diagonal elements to establish that such a Hessian is positive-definite, with the
implication that the objective function is strictly convex.

Figure 2.6 shows the shape of a strictly convex function in two dimen-
sions. The figure also shows a line segment connecting two points on this
function. As required by the strict convexity condition, this line lies entirely
above the function.

It should be noted here that if a line segment connecting any two points
of z(x) never lies above the function, z(x) is concave. Concavity (which is a
sufficient condition for a local maximum to be unique) can also be identified
by a linear approximation of z(x) overestimating (or rather, not underestimat-
ing) the function, or by an appropriate condition on the second derivatives.t
Consequently, the negative of a concave function is a convex function, and
vice versa. Note also that if a (strictly) convex function is multiplied by a
positive constant, the product is still a (strictly) convex function, and that the
sum of (strictly) convex functions is also a (strictly) convex function (see Prob-
lem 2.9). These properties are used later in the text to demonstrate convexity.

To see how the second-order conditions are applied, consider the exam-
ple of minimizing z(x,, x,) in Eq. [2.10]. The stationary point, x* = (0, 1), is a

1The Hessian of a concave function is negative semidefinite and the Hessian of a strictly
concave function is negative definite.
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local minimum if the function is strictly convex at that point. If the function is
also convex everywhere, then (0, 1) is a global minimum.

The function z(x,, x,) in Eq. [2.10] turns out to be strictly convex every-
where. To see this, condition [2.13b] can be used to check if

0z(xy, x,)
0x,

aZ(xla x2)
0x,

(V1 —xy) +

2(Xy, X3) + (2 — x2) <2y, ¥2)
for any two points (x,, x,) and (y,, y,). Substitution of the appropriate func-
tional forms (see Eqgs. [2.10] and [2.11]) leads to the inequality

[y — x1) + (2 — %)1* + (2 — x2)* >0

This inequality holds for any two distinct points (x,, x,) and (y,, y,), meaning
that the strict convexity condition [2.13b] is satisfied by z(x,, x;) in Eq. [2.10].
This function is, therefore, strictly convex everywhere.t Consequently, it can be
concluded that x* = (0, 1) is a local as well as a global minimum of z(x,, x,).
The minimum value of z(x,, x,)is z(0, 1) = —2.

Constrained Minimization Programs

As in the single-variable case, the focus of the review in this section is on
the first- and second-order conditions for a minimum. As in that case, the
minimum of a constrained multidimensional program can occur on the
boundary of the feasible region, where the condition Vz(x*) = 0 may not hold.

Consider the two-dimensional program depicted in Figure 2.7a, where
the feasible region is defined by six constraints and the objective function, z(x),
is illustrated by the contour lines. The problem is

min z(xy, X,)
subject to
gj(xlaXZ)ij; j=12,...,6

It is apparent from the figure that the solution of this problem, x* = (x¥, x3),
lies at the intersection of constraints 2 and 3. These constraints are therefore
binding at the minimum, or, in other words, g,(x¥, x¥) = b, and g,(x¥, x%) =
b3 .

The direction perpendicular to any curve of the form g(x,, x,) =
constant, at some point, X' = (x}, x5), is given by the gradient of the curve at

+The strict convexity can also be checked by using the condition on the Hessian, which is

given by
(2 2)
H=
2 4

This matrix is positive definite (its first leading minor equals 2 and its determinant, which is its
second leading minor equals 2 - 4 — 2 - 2 = 4). Both leading minors are positive and H is, there-
fore, positive definite, meaning that z(x,, x,)is strictly convex everywhere.
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Figure 2.7 Kuhn-Tucker conditions: (a)
contours of the objective function and the
feasible region; (b) the gradient of the ob-
jective function lies within the cone gener-
ated by the gradients of the binding con-
straints.

that point, that iS, by the vector
dg(x) dg(x’

0x, ~ 0x,

The enlarged portion shown in Figure 2.7b depicts the point (x}, x3) and
the gradients of the two binding constraint functions at this point, Vg,(x*) and
Vgi(x*). The definition of the first-order conditions for constrained problems
rests on the observation that the gradient of the objective function at this
point, Vz(x*), must liec between the gradients of the binding constraints. The
gradient vector, Vz(x*), and its opposite vector, —Vz(x*), as well as — Vg,(x*)
and —Vg,(x*), are all shown in Figure 2.7b, where the aforementioned con-
dition can be intuitively verified. If, for example, — Vz(x*) were to point below
—Vgi(x*), z(x) could be further decreased by sliding to the right, along g,(x)
(see Figure 2.7b). Similarly, if — Vz(x*) were to point above — g,(x*), z(x) could
surely be decreased further by sliding upward along g,(x*). Only when
—Vz(x*) is between — Vg,(x*) and — Vg,(x*) can the objective function not be
decreased further. This condition is a generalization of the “same signs” con-
dition which was applicable in the single-variable case (see Figure 2.4 and the
related argument).
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With multidimensional functions, the constraints define some surfaces
and the gradient of each of these constraints at a given point is a vector that is
perpendicular (normal) to the surface at that point. The observation on which
the first-order conditions are based for this case in that the gradients of the
binding constraints create an imaginary “cone” within which the gradient of
the objective function must lie.

Thus the first-order conditions can be written as a specification of the
direction of the gradient of z(x) at x* in relation to the directions of the
binding constraints. In the multidimensional case, the requirement is that
Vz(x*) be expressed as a linear combination (with nonnegative coefficients) of
the gradients of the binding constraints. For the example in Figure 2.7, this
condition is

Vz(x*) = u, Vg,(x*) + u;3 Vgs(x*¥)
where u, and u, are nonnegative scalars associated with the second and third

constraints, respectively. The same condition can be written in expanded nota-
tion as

ox) _  0ga(x¥) | Ogslx?)

ox; % ox; 3 ox, fori=1,2

In order to generalize this condition to problems of the type
min z(x)
subject to
gix) = b; Vie #

an auxiliary variable, u;, can be defined for each constraint. In a fashion
analogous to the single-dimensional case, let u; be nonnegative if the jth con-
straint is binding at x*, and let u; = 0 for any nonbinding constraint.

The first-order conditions can now be written as follows:}

i

6z(x ) 6g (x

fori=1,2,...,1 [2.14a]

and
#; 20, u;[b;—gix*)]=0, g;x*)=0b; Vie # [2.14b]

Conditions [2.14] are known as the Kuhn—Tucker conditions, named after the
two mathematicians who first proved that these are the conditions necessary

+Eq. [2.14a] can be written in vector notation as

Vz(x*) = Y u; Vg, (x*)
i
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for a constrained minimum. The auxiliary variables u; are known as dual
variables as well as Lagrange multipliers (since Eq. [2.14a] is identical to the
Lagrangian condition in classical optimization theory, as shown in Section
2.3). The condition u;[b; — g;(x*)] =0,V j e #,is known as the complemen-
tary slackness condition.

The Kuhn-Tucker conditions include the observation (Eq. [2.14a]) that
the gradient of the objective function, at the minimum, can be expressed as a
linear combination, with nonnegative coefficient, of the gradients of the bind-
ing constraints. Equations [2.14b] include the condition that these coefficients
(which are the dual variables) are, in fact, nonnegative. It also includes the
complementary slackness condition, which states that the values of the dual
variable associated with each nonbinding constraint is zero. These three con-
ditions mean that if none of the constraints is binding (or if the program is
unconstrained), the first-order condition is simply Vz(x*) = 0. The last set of
conditions in Eq. [2.14b] ensures that the optimal solution is feasible.

As it turns out, there are some cases, which are seldom encountered in
practice, in which the Kuhn-Tucker conditions do not hold at the minimum.
If the set of constraints satisfies certain constraint qualifications, however, these
situations will not arise. For the purposes of this text, it is sufficient to require
that the constraint set define a convex feasible region. This condition is ex-
plained below in conjunction with the second-order conditions for a con-
strained minimum of a multidimensional function. The constraint qualification
is always satisfied for a convex feasible region.

The values of the dual variables at the solution point provide valuable
information about the sensitivity of the value of z(x) at its minimum [i.e.,
z(x*)] to the constraints. If the right-hand side of the jth constraint, g;(x) > b;,
is relaxed by some small amount, Ab;, the minimum value of z(x) will decrease
by u; Ab;. Thus u; is a measure of the sensitivity of the minimum value of z(x)
to the restriction imposed by the jth constraint. If a constraint is not binding,
one would expect that its relaxation would not affect z(x*) and indeed, for
these constraints u; = 0.

The determination of the first-order conditions of a constrained mini-
mum can be exemplified by using z(x,, x,) in Eq. [2.10]. At this point, how-
ever, assume that the problem is to minimize the function

2(xy, X3) = x2 + 2x% + 2x,%, — 2x, — 4x, [2.15a]
subject to
x; + X2 = 2 [2'15b]

Before this problem is attempted, the known unconstrained solution should be
tested for feasibility since if it is feasible, it will also be optimal. (Why?) As
calculated before, x* = (0, 1); this point, unfortunately, is not feasible since
constraint [2.15b] is not satisfied.
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The Kuhn-Tucker conditions for this problem are as follows:}

2x¥+2x3¥—2=u [2.16a]
4x3 +2xF —4=u [2.16b]
u2—x¥—x3=0 [2.16¢]
xF+x3=2 [2.16d]

u>0 [2.16¢]

To solve these equations, note that if u =0, Eqs. [2.16a] and [2.16b]
reduce to [2.12a] and [2.12b]. The solution of these equations is x = (0, 1), a
solution that does not satisfy Eq. [2.16d]. Consequently, u > 0, meaning that
the solution satisfies the three equations

2x¥+2x¥—2—u=0 [2.17a]
2x¥ +4x3 —4—u=0 [2.17b]
xF+x3—-2=0 [2.17¢c]
The solution of this system of equations is
xf=1
x¥=1
u¥=2
The value of the constrained minimum is z(1, 1) = — 1, which is, of course,

higher than the value of the unconstrained minimum. (Check this.)

The second-order conditions for constrained multidimensional mini-
mization programs include an additional requirement (in comparison with
unconstrained problems), as in the single-dimensional case. For a program to
have a unique minimum, the constraint set itself has to define a convex feasible
region. Figure 2.8a illustrates two local minima that may occur under a non-
convex feasible region. Figures 2.8b and c illustrate convex feasible regions,
where a line segment connecting any two points of each region lies entirely
within the region. Hence, to ensure that x* is a global minimum, convexity of
the feasible region should be required in addition to requiring the convexity of
z(x) for all feasible x and strict convexity of z(x) at x*.

As in the single-dimensional case, convexity is a relatively strong con-
dition; it is sufficient to require only that a function be ditonic in order to
ensure the uniqueness of a minimum. It is, however, easier to prove convexity

+The first two conditions correspond to Eq. [2.14a], stating that equality for each of the
two components of the gradient vector. To relate this to Eq. [2.14a], note that the constraint in
this problem is expressed in terms of the function g(x,, x,) = x, + x,, for which dg(x)/dx, =1
and dg(x)/dx, = 1. The last three equations above correspond to Eq. [2.14b]. Equation [2.16¢c]
states the complementary slackness condition, Eq. [2.16d] requires the feasibility of the solution,
and Eq. [2.16e] states the nonnegativity of the dual variable.
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(o) (b) (<)

Figure 2.8 Shape of the feasible region: (a) nonconvex feasible region—two local
minima are illustrated; (b) convex feasible region; (c) convex feasible region with
linear constraints.

and this should always be tried first. Furthermore, in all cases dealt with in
this text, the objective function is twice continuously differentiable, meaning
that the second derivatives (Hessian) condition can be used to determine con-
vexity. Also, this book deals exclusively with linear constraints and convex
feasible regions.

2.3 SOME SPECIAL PROGRAMS

This section deals with several cases of multidimensional constrained mini-
mization programs that are of special interest in the study of equilibrium
assignment. Included in this discussion are programs with nonnegativity con-
straints, programs with equality constraints, programs with both nonnegati-
vity and equality constraints, and linear programs. This section also suggests
an alternative approach to the statement of the first-order conditions of any
minimization program. This statement is based on the concept of Lagrangians,
which is explained in relation to the programs discussed here.

Nonnegativity Constraints

The first-order conditions for the case in which the feasible region in-
cludes all nonnegative values of x can be posed without reference to the dual
variables. In the one-dimensional case, the program “min z(x) subject to
x > 0” can result in the two situations shown in Figure 2.9. In Figure 2.9a the
solution is at a point where dz(x*)/dx = 0 (and x* > 0), while in Figure 2.9b,
x* = 0, since the nonnegativity constraint is binding [and dz(x*)/dx > 0]. The
first-order condition for this problem can be written in a form encompassing
both these possible situations, as follows:

dz(x*) dz(x*)
» L2 )
x i 0 and Ix

=0
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Figure 29 First-order conditions for a program with nonnegativity constraints: (a)
internal minimum with dz(x*)/dx = 0 and x* > 0; (b) constrained minimum with
x* = 0 and dz(x*)/dx > 0.

Both conditions hold at the minimum point of z(x) (i.e., at x*). In addition, the
constraint x* > 0 has to hold as well.
Similarly, in the multidimensional case, the solution of the program

min z(x) [2.18a]
subject to
x; = 0; i=12..,1 [2.18b]

can occur either for a positive x [in which case Vz(x*) = 0] or it can be on the
boundary of the feasible region, where some x* = 0. Accordingly, the first-
order conditions for this problem can be stated as

* %*
L) o)

! o, o, 0 fori=1,2,...,1 [2.19]

Obviously, the condition x} > 0 has to hold as wellfori= 1,2, ..., I
Linear Equality Constraints

One of the most widely used programming problem formulations is the
minimization of a convex function subject to a set of equality constraints, that
is,

min z(x) [2.20a]
subject to

Yhyxi=b; j=1,2..,J [2.20b]

where h;; is a constant.

tA set of linear equality constraints will always satisfy the aforementioned constraint
qualification condition. Furthermore, such a constraint set will define a convex feasible region.
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The Kuhn-Tucker conditions for a stationary point of this program are
as follows (see Eqgs. [2.14]):

az(x*)

=Y uh; fori=1,...,1 [2.21a]
7
b;

Z hux* = forj=1,...,J [2.21b]
At the solution point all the constraints are binding. The complementary
slackness conditions are therefore automatically satisfied and the dual vari-
ables can have any sign (unlike the case of “greater than or equal to” con-
straints, in which the dual variables are restricted to be nonnegative).

These first-order conditions can also be derived by the method of La-
grange multipliers. This method involves the specifications of an auxiliary
function known as the Lagrangian. It includes the original variables x = (x,,

., X;) and the dual variables u = (uy, ..., u;), which are also known as La-
grange multipliers. The Lagrangian, L(x, u), for program [2.20] is given by

L(x, u) = 2(x) + ¥ u,.[b =X by x,] [2.22]

The usefulness of this formulation is that the stationary point of the La-
grangian coincides with the minimum of the constrained optimization [2.20].
Since the Lagrangian is unconstrained, its stationary point can be found by
solving for the root of the gradient of the Lagrangian, V, , L(x, u). Note that
the gradient is taken with respect to both types of variables, x and u. This
gradient can be naturally broken into its two types of components, and thus
the stationary point of Eq. [2.22] is where

V. Lx*, u*) =0 [2.23a]
and
V. L(x*, u*)=0 [2.23b]
Condition [2.23a] means that
*
%—Zu}"h,‘j=0 fori=1,...,1 [2.24a]

J
and [2.23b] means that
b; — hj(x*) =0 forj=1,...,J [2.24b]

Thus conditions [2.24] are identical to the Kuhn-Tucker conditions [2.21],
with the Lagrangian multipliers (..., u;, ...) playing the same role that the
dual variables played in Egs. [2.21]. Note that at any feasible point (of the

tThe asterisk added to u; in Eq. [2.24] emphasizes that the u/s are interpreted here as
variables of the Lagrangian. The asterisk denotes the values of these variables at the optimal
solution.
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original program)
L(x, u) = z(x)

since the added term, ) ; u;(b; — Y ; h;x.], equals zero (each component in the
sum is zero). In particular, note that the values of the Lagrangian and the
objective function are the same at the minimum point, x*.

Nonnegativity and Linear Equality Constraints

Many of the problems dealt with in this book include minimization
problems with both linear equality constraints and nonnegativity constraints.
The general form of these problems is

min z(x) [2.25a]
subject to
Yhyxi=by  j=1,..,J [2.25b]
and
x;=>0; i=1,...,1 [2.25¢]

To find the first-order conditions for a minimum for such a problem, the
Lagrangian with respect to the equality constraints should be formed first as

L(x, u) = z(x) + Z uj[bj - Z hy; xi] [2.26a]

Then the stationary point of this Lagrangian has to be determined, subject to
the constraint

x>0, i=1,...,1 [2.26b]

Unlike the case discussed previously, this problem includes nonnegativity con-
straints. Consequently, the stationary point of program [2.26] has to be deter-
mined by the method used to define the first-order condition for such pro-
grams, shown in Egs. [2.19]. For program [2.26] these conditions are the
following:

%* * * *
x;kaL(x,u) (BL(X,U)20

=0 amd o2 Vi [2.27a]
* *
Lo WY _ oy [2.27b]
ou;

J

Also, x¥ > 0,V i, as required by Eq. [2.26b]. Note that in comparison with the
first-order conditions for problems with only equality constraints, condition
[2.27a] replaces [2.23a] (to account for the nonnegativity of all x;). Equation
[2.27b] requires, simply, that the derivatives of L(x, u) with respect to u vanish
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at the minimum. No other condition is necessary since the values of u are not
constrained to be nonnegative (or anything else). This condition, then, is iden-
tical to [2.23b], specifying the original constraint.

The first-order conditions for the programs with linear equality and
nonnegativity constraints can be written explicitly as follows:

0z(x*) .
( ox, —%: *hu) Vi [2.28a]
0z(x*) .
ox, Z ujh; >0 Vi [2.28b]
z_ hyxt=b; Vj [2.28¢]
x¥=>0 Vi [2.28d]

These conditions are referred to repeatedly throughout the text. The same
conditions can be derived also by applying the Kuhn-Tucker conditions
[2.14] directly (see Problem 2.11).

More about Lagrangians’

Lagrangians can be used to derive the first-order conditions for general
mathematical programs such as

min z(x) [2.29a]
subject to
gix)2b; Vje g [2.29b]

This program can include any type of constraints. The Lagrangian for this
program is given by}

L(x, u) = z(x) + Z u;[b; — g;(x)] [2.30]

The dual variables in this formulation are restricted to be nonnegative, due to
the “greater than or equal to” type of constraints (as in the case discussed in
Section 2.2). This distinguishes this formulation from the case of equality
constraints in which the dual variables are unrestricted in sign. (See Problem
2.18))

As it turns out, the stationary point of the Lagrangian of a convex
function is not at a minimum or at a maximum of L(x, u) but rather at a
saddle point of the Lagrangian. In fact, L(x*, u*) minimizes L(x, u) with respect

1This section can be skipped without loss of continuity. The material in here is needed
only as a background to the section on estimation of origin—destination matrices in Chapter 13.

$Note that Eq. [2.22] is a particular case of this Lagrangian.
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Figure 2.10 Saddle point of a two-argument function. The point (0, 0) maximizes
L{x, u) with respect to u and minimizes L(x, u) with respect to x.

to x and maximizes it with respect to u. This condition can be stated as
L(x*, u) < L(x*, u*) < L(x, u*) [2.31]

Figure 2.10 depicts the shape of saddle point for a function of two variables.

In order to write the first-order conditions of Lagrangian [2.30], note
that its minimization is unconstrained with respect to x. The maximization
with respect to u, however, is subject to the nonnegativity constraints. The
saddle point of L(x, u) satisfies, then, the following set of first-order conditions:

L*’*
dL(x u)=0

o, Vi [2.32a]

* * %* %*

2T o gpg ST oy [2.32b]
ou; Ou;
In addition, it is required that u; > 0, ¥ j. Condition [2.32a] states simply that
the gradient vanishes at the stationary point. Conditions [2.32b] parallel con-
dition [2.19] but for a maximum of a function (see also Eq. [2.27a]). Since
L(x, u) has to be maximized with respect to u = (u,, ..., u;), the maximum of
L(x, w) with respect to u; can occurt either at a point where dL(x, u)/du; = 0 or
at a point where u; = 0. In the latter case, it must be true that L(x, u)/du; < 0.
This observation gives rise to conditions [2.32b]. Conditions [2.32] can be
written explicitly as

02x*) < . 09,(x%) _ .
ox; ; W, —0 Vi [2.33a]
b —g;x*) <0 Vj [2.33b]
wlb;—gx*)]=0 Vj [2.33c]

tAssuming, of course, that the maximum exists.
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and, by definition,
ur>0 vj [2.33d]

These conditions are identical to the Kuhn-Tucker conditions [2.14].

The Lagrangian approach means that constrained minimization pro-
grams can be solved as unconstrained problems of finding the saddle point of
the Lagrangian. This point can be found by minimizing the Lagrangian with
respect to x given u, and then maximizing over all values of u. This mini-
mization approach is used in Chapter 13. In other parts of the book, the
Lagrangian is used only as an aid in the formulation of first-order conditions.

Note that the functional form of the Lagrangian demonstrates why the
dual variables can be interpreted as a measure of the sensitivity of the optimal
solution to a constraint relaxation, as argued in Section 2.2. At the solution

point,
L{x*, u*) = z(x*) + ; u;[b; — g,(x*)] [2.34]

At this point L(x*, u*) = z(x*). If, however, the kth constraint is relaxed by a
small amount, Ab,, and b, in [2.34] is replaced by b, — Ab,, the new minimum
value of L(x*, u*) will approximately equal the old value (before the relax-
ation) minus u, Ab,. Thus a relaxation of the kth constraint by Ab, improves
the optimal value of the objective function by, approximately, u, Ab,.

Linear Programs

A special case of mathematical programming is linear programming
(LP). In a linear minimization program, both the objective function and the
constraints are linear functions of x. A linear program can be written as

min Y ¢; x; [2.35a]

subject to
Y hix;>b

ij J

Vj [2.35b]
where c; and h;; are constants and the summations go fromi=1toi=I.

The widespread use of linear programming problems stems from the
relative ease of solving them. Large linear programming problems can be
solved very efficiently by using modern computers. The ease of solving linear
programs results from the fact that their solutions never lie at an internal point
but always at the boundary of the feasible region. Furthermore, if a solution
exists, it will always be at a “corner” of the feasible region. Thus, instead of
searching for a minimum all over the feasible region, only the corner points of
this region have to be checked. This property is intuitively apparent in Figure
2.11a, which illustrates a feasible region and the contour lines of an objective
function for a linear program in two variables, x; and x, . The simplex method
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Figure 2.11 Linear programs in two variables: (a) the solution is at a corner of the
feasible region; (b) multiple minima.

for solving linear programs exploits this property by progressing through
adjacent corners of the feasible region.

In some cases, multiple minima [all with the same value of z(x*)] may
exist (since the “strict convexity” condition does not apply to linear pro-
grams), as illustrated in Figure 2.11b. Some of these minima, however, will
always be at the intersection of several constraints (in other words, at the
corners of the feasible region). The minimum of z(x) thus, can still be deter-
mined even if only the corners of the feasible region are searched.

2.4 SUMMARY

Chapter 2 reviews the necessary and sufficient conditions for a minimum of a
constrained minimization program. The necessary (first-order) conditions are
formulated in terms of a set of auxiliary variables known as the dual variables.
Each dual variable is associated with a constraint and its value at the solution
point indicates the sensitivity of the solution to a small relaxation or tight-
ening of that constraint. Consequently, it is zero for nonbinding constraints
and nonnegative for the binding constraints. If the program is unconstrained,
these first-order conditions (known as the Kuhn—-Tucker conditions) reduce to
the requirement that the gradient vanishes. These conditions alone, however,
cannot be used to identify the minimum of any program because they hold at
any stationary point of the objective function and not only at minima.

To make sure that a stationary point, x*, is the minimum of some
function z(x), two requirements have to be fulfilled: (1) x* should be a local
minimum, and (2) x* should be either the lowest of all the local minima or the
only one. In order to meet the first requirement, it is sufficient to show that
z(x) is strictly convex in the vicinity of x*. The second requirement is difficult
to meet if there exist multiple minima. It is sufficient, however, to show that
z(x) is convex in order to ensure that a local minimum is unique (i.e., that no



Chap. 2 Basic Concepts in Minimization Problems 53

other local maxima exist). If a program is constrained, it is also required that
the constraint set define a convex feasible region in order to ensure uniqueness.
Convexity (or strict convexity) is a second-order condition that can be es-
tablished with the help of several criteria. The criterion used most often in this
book applies when the objective function is twice differentiable; in this case
strict convexity can be established by determining that the Hessian of the
objective function is positive definite. This condition can easily be checked in
cases in which the Hessian is diagonal; if all the entries are positive, the
Hessian is positive definite. This implies that the objective function is strictly
convex. If the diagonal entries are nonnegative, the Hessian is positive semidef-
inite, meaning that the objective function is convex.

Two special types of mathematical programs are highlighted in Section
2.3. The first one is a program with only equality and nonnegativity con-
straints. This type of program is used throughout the book and thus its first-
order conditions are derived explicitly. The constraint set of such a program is
always convex, meaning that only the objective function has to be checked in
order to establish the uniqueness of a minimum.

The first-order conditions for this type of programs, as well as for general
maximization programs can be derived through the use of the Lagrangian,
which is a function of the original variables and the dual variables of the
program. The Lagrangian approach is used repeatedly throughout this book.

The second type of program highlighted is a linear program where both
the objective function and the constraints are linear. This type of program is
particularly easy to solve and, in fact, the solution techniques to many nonlin-
ear programs consist of repeated solutions of a related linear program.

2.5 ANNOTATED REFERENCES

The material covered in this chapter can be found in any standard mathemat-
ical programming text. At the eclementary level the reader can consult
Chapters 14 and 15 of Wagner (1975), or the texts by Simmons (1975), Bradley
et al. (1977), or Wismer and Chattergy (1978). A somewhat more advanced
treatment is offered by Zangwill (1969) and Luenberger (1973).

2.6 PROBLEMS

2.1. Show that the first derivative of a continuously differentiable function, z(x), is zero
at a local minimum.

*2.2. Show that if a function is continuously differentiable, it is strictly convex if and
only if a linear approximation to the function always underestimates it. (Hint:
Show that if condition [2.4a] holds, then [2.4b] is true, and if [2.4b] holds, then
[2.4a] is true))

*Problems marked with an asterisk require a somewhat higher level of mathematics than
the rest.
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*2.3. Show that if a function is twice continuously differentiable, it is strictly convex if
and only if the second derivative of the function is positive. (Hint: Show that if
condition [2.4a] holds, then [2.4c] is true, and if [2.4c] holds, then [2.4a] is true.)

2.4. In which of the following cases does the program min z(x) subject to g4x) > b;
with j =1, ..., J have a unique minimum? Explain your answers.

(a) z(x)is convex and the constraint set is convex.
(b) z(x)is ditonic and unconstrained.
(¢) z(x)is monotonically increasing and unconstrained.
(d) z(x)is concave and the constraint set is convex.
(e) z(x) is piecewise continuous over a convex constraint set.
2.5. Consider the program min z(x) = (x — 2)% subject to 0 < x < 1.
(a) Write this program in standard form.
(b) Show that the first-order conditions [2.7] hold at the point that minimizes
2(x) in the feasible region.

2.6. Plot the contours (in the feasible region only) of a two-dimensional function
z(x,, x,) subject to 0 < x; < a, 0 < x, < b under the assumption that the func-
tion is:

(a) Strictly convex.

(b) Convex with multiple minima.

(c) Linear.

(d) Constrained by x; + x, = ¢ (in addition to the previous constraints).

*2.7. Show that the gradient always points in the direction of the steepest (local)
increase in z(x).

238. Calculate the gradient of z(x,, x,) = 2(x; — 3)*> + 3(x, — 2)* at (x;, x;) =(2, 3)
and at (x, x;) = (3, 2).

2.9. Show that the sum of convex functions is a convex function.

2.10. The value of the dual variable used in solving Egs. [2.15] is u* = 2. Relax the
constraint by a small amount and solve the program again. Show that u* mea-
sures the sensitivity of z(x*) to the binding constraint.

2.11. (a) Using the Kuhn-Tucker conditions, show that Eq. [2.19] holds if the only

constraints are nonnegativity constraints.
(b) Derive Egs. [2.28] directly from the Kuhn-Tucker conditions (Eqgs. [2.14]).

2.12. Using the Lagrangian of z(x) subject to g;(x) = b; for j =1, ..., J, demonstrate
why a relaxation of the jth constraint by a small amount, Ab;, would decrease
2(x*) by u; Ab;.

2.13. Using the Kuhn-Tucker conditions, solve the problem

min z(x,, x;) = 4x, — 2)? + 3(x, — 4)?*
subject to
X +x,25
x, =1
X322

Show that the solution is unique.
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2.14. Solve the program
min z(x,, X;) = 5x% — 3x,x, + 2x3 + 7
subject to
2%, +x,=35
x; =0
x, 20
using Lagrangians. Plot the feasible region.
2.15. Solve the program
min z(x,, X,) = 2x; + X,
subject to
I +x,21
Xy +4x; =2
-x+x,21

Plot the feasible region and the contours of the objective function.
2.16. Given the function

2(xy, X5, X3) = 3x% + 2x,%, + 6x3 — X, x5 + 5x3 — 4x; — 2x, — 6x3 + 9
2%3 3

(a) Find the minimum of z(x,, x,, x3).
(b) Show that it is a local minimum.
(c) Show that this local minimum is a global minimum.

2.17. Given that the dual variables indicate the improvement in the objective function
value, associated with the relaxation of any constraint, argue why u; > 0,V j, for a
minimization program with standard inequality constraints and why u; can have
any sign for equality constraints.

2.18. Derive the Kuhn-Tucker conditions for the program
min 2(x)
subject to

Zhuxi=bj Vj

without using Lagrangians. (Hint: Express the constraints in standard form.)
Show that the dual variables associated with equality constraints are unrestricted
in sign.
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Formulating
the Assignment Problem
as a Mathematical Program

e et v o o, o i oy

The traffic assignment or the transportation network equilibrium problem was
defined in Chapter 1. As mentioned there, the basic problem is to find the link
flows given the origin—destination trip rates, the network, and the link per-
formance functions (see Section 1.3). The solution of the problem is based on
the behavioral assumption that each motorist travels on the path that mini-
mizes the travel timet from origin to destination. This choice rule implies that
at equilibrium the link-flow pattern is such that the travel times on all used
paths connecting any given O-D pair will be equal; the travel time on all of
these used paths will also be less than or equal to the travel time on any of the
unused paths. At this point, the network is in user equilibrium; no motorist
can experience a lower travel time by unilaterally changing routes.

Section 1.3 demonstrated how the user-equilibrium flow pattern can be
found for a small network by using graphical methods. Unfortunately, such
methods cannot be used to solve for equilibrium over networks with a large
number of nodes, links, and O-D pairs. The approach described in this text for
solving large problems uses the equivalent minimization method. This ap-
proach involves the formulation of a mathematical program, the solution of
which is the user-equilibrium flow pattern. This general approach is used often
in operations research, in cases in which it is easier to minimize the equivalent
program than to solve a set of conditions directly.

For the minimization formulation to be useful, the equivalent mathemat-

+As mentioned in Section 1.3, the term “travel time” can be understood to represent
general travel impedance, combining elements of travel costs and other components of travel
disutility.

56
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ical program has to have a unique solution, which also satisfies the equilibri-
um conditions. Furthermore, the program has to be relatively easy to solve.
The focus of this chapter is on the formulation of the equivalent minimization
program corresponding to the equilibrium traffic assignment problem and on
the properties of this program. Solution procedures are then described in
Chapters 4 and 5. This chapter is organized as follows: Section 3.1 presents the
equivalent minimization formulation, Section 3.2 shows that its solution sa-
tisfies the equilibrium conditions, and Section 3.3 proves that this solution is
unique. Sections 3.4 and 3.5 explore the nature of the minimization program
and the user-equilibrium flow pattern by comparing them to a related flow
pattern over the network.

Before the basic formulation is discussed, the following paragraphs pre-
sent the network notations used in this chapter and throughout this text. The
network itself is represented by a directed graph that includes a set of consecu-
tively numbered nodes, A4 and a set of consecutively numbered arcs (links),
<. In some cases it will be useful to refer to links by their end nodes (i.e., link
m— n leading from node m to node n), especially in discussing certain algo-
rithms. In these cases the notations will be clarified before the discussion. Let
AR denote the set of origin centroids (which are the nodes at which flows are
generated) and let & denote the set of destination centroids (which are the
nodes at which flows terminate). The origin node set and the destination node
set are not mutually exclusive since nodes can serve as origins and destinations
of different trips at the same time (i.e, & N & # ). Each O-D pair r-s is
connected by a set of paths (routes) through the network. This set is denoted
by A,  where r € # and s € &.

The origin—destination matrix is denoted by q with entries g,,. In other
words, g,, is the trip rate between origin r and destination s during the period
of analysis. Let x, and ¢, represent the flow and travel time, respectively, on
link a (where a € o). Furthermore, t, = t,(x,), where t,(-) represents the re-
lationship between flow and travel time for link a. In other words, t,(x,) is the
link performance function (which is also known as the volume-delay curve or
the link congestion function). Similarly, let f%° and ¢ represent the flow and
travel time, respectively, on path k connecting origin r and destination s (k €
A ,,). The travel time on a particular path is the sum of the travel time on the
links comprising this path. This relationship can be expressed mathematically
as

P =Y 1,80 VkeA,, VreR VseS [3.1a]

where 77, =1 if link g is a part of path k connecting O-D pair r-s, and
@ = 0 otherwise. Using the same indicator variable, the link flow can be
expressed as a function of the path flow, that is,

X =) L XS0 Vaesod [3.1b]
r s k

This equation means that the flow on each arc is the sum of the flows on all
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Figure 3.1 Network example with two
O-D pairs and four links.

paths going through that arc. Equations [3.1] are known as the path-arc
incidence relationships.

As an example of the use of the incidence relationships, consider the
simple network shown in Figure 3.1. It includes two O-D pairs: 1-4 and 24
(node 3 is neither an origin nor a destination point). The link numbers are
written on the links. Assume now that the first path from origin node 1 to
destination node 4 uses links 1 and 3 and the second one uses links 1 and 4.
Similarly, assume that the first path from origin node 2 to destination node 4
uses links 2 and 3 and the second one uses links 2 and 4. For example,
81*, =1 (since link 1 is on path 1 from node 1 to node 4), but 624, = 0 (since
link 3 is not on the second path from node 2 to node 4). The incidence
relationships for this network means that, for example,

ci* = 1,014 + 1,054 + 13030, + 1,004
= tl + t3

Thus Eq. [3.1a] reduces to the anticipated result that the travel time on path 1
between origin 1 and destination 4 is the sum of the travel times on the links
comprising this path. Similarly,
x3 =f1*03 + 30054, + f14634 + f3403h,
=fis sy
Again, Eq. [3.1b] gives the anticipated result here—that the flow on a particu-
lar link is the sum of the path flows traversing this link.

Many of the presentations appearing later in the text can be simplified
by using vector notation. In most cases this notation is used only to shorten
some mathematical expressions [as was the case in Chapter 2, where z(x,, ...,
x;) was denoted by z(x)]. Using vector notation, then, let x = (..., x,, ...),
t=(...ty,...), =0 f5..), f=(.,f%...), ¢™=(..,¢...), and
¢=(..., % ...). Furthermore, let A be the link—path incidence matrix with
elements &7 . Typically, this matrix is arranged in block form by O-D pair. In
other words, A = (..., A™, ...), where A" is the link—path incidence matrix for
O-D pair r-s. The number of rows in the incidence matrix, A™, equals the
number of links in the network and the number of columns in this matrix is
the number of paths between origin r and destination s. The element in the ath
row and kth column of A™ is 7%, in other words (A"™), , = d7 . Using vector
operations, the incidence relationships can now be written in matrix notation
as

c=t-A and x=1f.AT [3.2]
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TABLE 3.1 Basic Network Notation

N, node (index) set

o, arc (index) set

R, set of origin nodes; # < &

&, set of destination nodes; & = A~

K, set of paths connecting O-D pair r-s;re ®,s€ &

X5 flowon arc a; x = (..., X,, ...)

t,, travel time on arc a; t = (..., ¢,,...)

[ flow on path k connecting O-D pair r-s; f* = (..., f{, ...);

f=(..,.f%..)

(A8 travel time on path k connecting O-D pair r—s; ¢ = (..., ¢, ...);
c=(...,c%...)

Gy trip rate between origin r and destination s; (@),, = g,,

. . 1 if link a is on path k between O-D pair r—s
ey indicator variable: 67, = ,
’ " {0 otherwise

(A, =0 A=(...,A", ...)

The incidence matrix for the network example depicted in Figure 3.1 can
be written as follows:

O-D 0-D
1-4 2-4

—~A ~A—

w 1 21 2
link

1 1100
2 0 011
3 1 010
4 01 01

As the reader can check, Eq. [3.2] is identical to Eqs. [3.1] in terms of
specifying the relationships between flows and travel times for the network
example shown in Figure 3.1.

The network notation introduced here is summarized in Table 3.1. Fur-
ther notation is introduced as needed.

3.1 THE BASIC TRANSFORMATION

The equilibrium assignment problem is to find the link flows, x, that satisfy the
user-equilibrium criterion when all the origin—destination entries, q, have been
appropriately assigned. This link—flow pattern can be obtained by solving the
following mathematical program:

min z(x) = ¥ j " (@) doo [3.3a]
a JO
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subject to
YIE=6s Vrs [3.3b]
k

=20 Vkrs [3.3c]

The definitional constraints
= Z Z Z PO . Va [3.3d]
r s k

are also part of this program.

In this formulation, the objective function is the sum of the integrals of
the link performance functions. This function does not have any intuitive
economic or behavioral interpretation. It should be viewed strictly as a math-
ematical construct that is utilized to solve equilibrium problems.

Equation [3.3b] represents a set of flow conservation constraints. These
constraints state that the flow on all paths connecting each O-D pair has to
equal the O-D trip rate. In other words, all O-D trip rates have to be assigned
to the network. The nonnegativity conditions in Eq. [3.3c] are required to
ensure that the solution of the program will be physically meaningful.

The objective function of program [3.3], z(x), is formulated in terms of
link flows, whereas the flow conservation constraints are formulated in terms
of path flows. The network structure enters this formulation through the defi-
nitional incidence relationships [3.3d]. These incidence relationships express
the link flows in terms of the path flows [i.e., x = x(f)]. The incidence relation-
ships also mean that the partial derivative of link flow can be defined with
respect to a particular path flow.t In other words,

ox () 0 rssrs
_Eﬁ'"— 6fmn Z Z Zf s k = 5 [3'4]

since Of /of ™" = 0 if r—s # m—n or k # I. Equation [3.4] implies that the de-
rivative of the flow on link a with respect to the flow on path I between origin
m and destination n equals 1 if the link is a part of that path and zero
otherwise. These relationships are used later in the text to investigate the first-
and second-order conditions of program [3.3].

It is important to note that this formulation assumes that the travel time
on a given link is a function of the flow on that link only and not of the flow
on any other link in the network. This somewhat restrictive assumption is
discussed in detail and subsequently relaxed in Chapter 8. In addition, the link
performance functions are assumed to be positive and increasing. These latter

+The function x,(f) includes flow summation using the subscripts r, s, and k. To avoid
confusion in differentiation, the variable with respect to which the derivative is being taken is
subscripted by m, n, and I. Thus f™ is the flow on path I between origin m and destination n.
Similarly, x, is used below when the derivative of an expression including a sum over link flows is
taken with respect to the flow on a particular link.
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[link travel &
time |

“free flow” —p
travel time
Figure 32 Typical link performance

. s xa
function, ¢,(x,). [link flow]

assumptions are not restrictive in the sense that the congestion effects de-
scribed by these functions exhibit both characteristics, as mentioned in Section
1.2 (note that these curves are also convex). A typical performance curve is
depicted in Figure 3.2 (see also Figure 1.8). The assumptions on the per-
formance curves can be written mathematically as

Otfx,) _

o, 0 Va#b [3.5a]
Oty(x,)
_6xa >0 Va [3.5b]

The problem formulation represented by Eqs. [3.3] is known as Beck-
mann’s transformation. It has been evident in the transportation literature
since the mid-1950s, but its usefulness became apparent only when solution
algorithms for this program were developed in the late 1960s and early 1970s.
Some of these algorithms are discussed in Chapter 5.

The following section formally proves that the solution to Beckmann’s
transformation satisfies the user-equilibrium conditions. This equivalency is
first illustrated, however, for a simple situation.

Consider the network depicted in Figure 3.3. This network includes two
paths (which are also links), leading from the origin, O, to the destination, D.
The volume—delay curves for the two links are given by

t=2+x [3.6a]

t, =1+ 2x, [3.6b]
The O-D flow, g, is 5 units of flow, that is,

X +x,=5 [3.6c]

The equilibrium condition for this example can be expressed as (see Section
1.3)

ty<t, ifx;, >0 and t;>t, ifx,>0 [3.6d]

For this example it can be verified by inspection that both paths will be used



62 Part |l User Equilibrium
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1 E i Figure 3.3 Equilibrium example: (a) a
i | x two-link network; (b) the performance
1 2 3 Flow [veh/min] functions and the equilibrium solution.

at equilibrium and the last equation can therefore be written simply (given
that x, > 0 and x, > 0) as

tl = t2 [3.66]

The equilibrium problem then, is to solve four equations (the two volume-
delay curves [3.6a] and [3.6b], the flow conservation condition [3.6c], and the
user-equilibrium condition [3.6€]), in four unknowns: x,, x,, t;, and t,. The
solution to this set of equations is

x; =3 flow units
X, =2 flow units
t,=t,=5 time units

When the problem is formulated as a minimization program, the result is the
following:

min z(x) = v“’“(2 + ) do + sz(l + 2w) do
o )

subject to
X;+x,=35
Xy, X, 20
To set the problem up as a simple one-dimensional unconstrained mini-

mization, x, = 5 — x; can be substituted into the objective function and into
the remaining (nonnegativity) constraints to get the problem

5—-x1

2+ w) do + I (1 4+ 2w)dw [3.7a]
o

X1

0

min z(x,) = f
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subject to
x;=>20 and 5—x;,>0 [3.7b]

To solve this program, the constraints can be relaxed and the objective func-
tion can be minimized as an unconstrained program. If the solution satisfies
the constraints, it is valid for the constrained program as well. Carrying out
the integration and collecting similar terms, the objective function becomes

2(x,) = 1.5x2 — 9x, + 30

This function attains its minimum at x} = 3, where dz(x,)/dx; = 0. This solu-
tion satisfies the two constraints in Eq. [3.7b] and is therefore a minimum of
the constrained program [3.7] as well. The original flow conservation con-
straint guarantees that x¥ = 2 and indeed, the solution of the mathematical
program is identical to the solution of the equilibrium equations. This equival-
ency is demonstrated for the general case in the next section.

3.2 EQUIVALENCY CONDITIONS

To demonstrate the equivalence of the equilibrium assignment problem and
program [3.3], it has to be shown that any flow pattern that solves [3.3] also
satisfies the equilibrium conditions. This equivalency is demonstrated in this
section by proving that the first-order conditions for the minimization pro-
gram are identical to the equilibrium conditions. From the discussion in
Chapter 2, recall that the solution of any mathematical program satisfies its
first-order conditions at any local minimum or any stationary point of the
program. If the first-order conditions are identical to the equilibrium con-
ditions, the latter hold at any local minimum (or stationary point). Thus, by
finding a minimum point of the program, an equilibrium flow pattern is ob-
tained.

To derive the first-order conditions of the Beckmann transformation,
observe that it is a minimization problem with linear equality and nonnegati-
vity constraints. A general form of the first-order conditions for such problems
was derived in Section 2.3 (see Eqs. [2.25] and the related discussion). Follow-
ing that section, the Lagrangian of the equivalent minimization problem with
respect to the equality constraints [3.3b] can be formulated as¥

L(fy “) = Z[X(f)] + Z urs(qrs - Zf?) [3-83']
rs k
where u,, denotes the dual variable associated with the flow conservation

constraint for O-D pair r—s in Eq. [3.3b]. The first-order conditions of pro-
gram [3.3] are equivalent to the first-order conditions of Lagrangian [3.8a],

The shorthand notation “},.” is used throughout the book to abbreviate “Y, ¥, .”
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given that L(f, u) has to be minimized with respect to nonnegative path flows,
that is,

k=0 VYkrs [3.8b]

The formulation of this Lagrangian is given in terms of path flow, by
using the incidence relationships, x, = x,(f) in Eq. [3.3d], for every link a. At
the stationary point of the Lagrangian, the following conditions have to hold
with respect to the path-flow variables:

s OL(f, w) OL(f, u)
=0 d ——=>0 Vkr, .
v PR an o = r,s [3.9a]
and the following conditions have to hold with respect to the dual variables:
oL,
;T’“) =0 Vrs [3.9b]

rs

Also, the nonnegativity constraints have to hold (ie., fiF =0, Yk, r, 5). The
asterisks have been omitted from the last expressions (in comparison with Eqgs.
[2.27]) for clarity of notation. This practice is followed hereafter in this book.

Condition [3.9b] simply states the flow conservation constraints, which
obviously, have to hold at equilibrium. The first-order conditions expressed in
Eq. [3.9a] can be obtained explicitly by calculating the partial derivatives of
L(f, u) with respect to the flow variables, f, and substituting the result into
[3.9a]. This derivative is given by

0 0
af[ afm,, Z[X(f)] + 0f;'"' - urs(qrs ;fk) [310]
The right-hand side of Eq. [3.10] consists of the sum of two types of terms, the
first of which is the derivative of the objective function and the second is the
derivative of a term involving the constraints. These two types of terms are
each calculated separately.
The first term on the right-hand side of Eq. [3.10] is the derivative of the
objective function [3.3a] with respect to f. This derivative can be evaluated
by using the chain rule:

,u) =

oz[x(f)] 0z(x) 0xp
ar vew 0%y OfT"

Each term in the sum on the right-hand side of this equation is the product of
two quantities. The first quantity is dz(x)/dx,, which can be easily calculated
since the travel time on any link is a function of the flow on that link only.
Hence

[3.11]

z(x)

J t(w) do =1t, [3.12a]
xb a

ox,

The second quantity in the product is the partial derivative of a link flow with
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respect to the flow on a particular path. As shown in Section 3.1 (see Eq.

[3.4])
Oxp
oy

Substituting the last two expressions into Eq. [3.11], the derivative of the
objective function with respect to the flow on a particular path becomes

= 5m [3.12b]

oz[x(f)] mn
—5f;"" —% lp0p,1 = C) (3.13]

In other words, it is the travel time on that particular path.
The second type of term in Eq. [3.10] is even simpler to calculate since

6f;s_{1 ifr=mys=nand k=1

ar |0 otherwise
Thus (since g, is a constant and u,, is not a function of f7™") this term becomes
0
Armn Z urs<qrs - Zf;s> = —Upy [314]
6fl rs k

Substituting both [3.13] and [3.14] into Eq. [3.10], the partial derivative of
the Lagrangian becomes
0
ar

The general first-order conditions (Eqs. [3.9]) for the minimization program in
Eqgs. [3.3] can now be expressed explicitly as

L, u)=c" —u,, [3.15]

S —u) =0 Vkors [3.16a]
—u,=20 Vkrs [3.16b]
YIe=4qs Vrs [3.16¢c]

k
$=0 Vkrs [3.16d]

Conditions [3.16c] and [3.16d] are simply the flow conservation and
nonnegativity constraints, respectively. These constraints, naturally, hold at
the point that minimizes the objective function. The following discussion is
focused on the nature of the first two conditions expressed in Eqgs. [3.16a] and
[3.16b]. These conditions hold for each path between any O-D pair in the
network. For a given path, say path k connecting origin r and destination s,
the conditions hold for two possible combinations of path flow and travel
time. Either the flow on that path is zero (i.e., fi¥ = 0 and Eq. [3.16a] holds), in
which case the travel time on this path, ¢}, must be greater than or equal to
the O-D specific Lagrange multiplier, u,, (as required by Eq. [3.16b]); or the
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flow on the kth path is positive, in which case ¢’ = u,, and both Eqgs. [3.16a]
and [3.16b] hold as equalities.t In any event, the Lagrange multiplier of a
given O-D pair is less than or equal to the travel time on all paths connecting
this pair. Thus u,; equals the minimum path travel time between origin r and
destination s.

With this interpretation, it is now clear that Egs. [3.16], in fact, state the
user-equilibrium principle. The paths connecting any O-D pair can be divided
into two categories: those carrying flow, on which the travel time equals the
minimum O-D travel time; and those not carrying flow, on which the travel
time is greater than (or equal to) the minimum O-D travel time. If the flow
pattern satisfies these equations, no motorist can be better off by unilaterally
changing routes. All other routes have either equal or higher travel times. The
user-equilibrium criteria are thus met for every O-D pair.

The equivalence between the UE conditions and the first-order con-
ditions of program [3.3] means that the UE conditions are satisfied at any
local minimum or, in fact, at any stationary point of this program. Accord-
ingly, this program is usually referred to as the UE program or the UE
equivalent minimization. The next section shows that the UE program has
only one stationary point, which is a minimum.

3.3 UNIQUENESS CONDITIONS

In order to show that the UE equivalent minimization program has only one
solution, it is sufficient to prove that objective function [3.3a] is strictly convex
in the vicinity of x* (and convex elsewhere) and that the feasible region (de-
fined by constraints [3.3b] and [3.3c]) is convex. The convexity of the feasible
region is assured for linear equality constraints, as mentioned in Section 2.3.
The addition of the nonnegativity constraints does not alter this characteristic.
The focus of this section, then, is on the properties of the objective function.

The convexity of the objective function is proved here with respect to
link flows; path flows are treated later. This section demonstrates that the
function

z2(x) =Y. L xata(cu) dw

is convex under the aforementioned assumptions on the link performance
functions (namely, that dz,(-)/0x, = 0 for a # b and dt(x,)/dx, > 0, ¥V a—see
Egs. [3.5]). This is done by proving that the Hessian [the matrix of the second
derivatives of z(x) with respect to x] is positive definite, thus ensuring that z(x)
is, in fact, strictly convex everywhere.

The Hessian is calculated by using a representative term of the matrix.

tAll this holds at the minimum point (the solution of the minimization program); recall
that the asterisks are omitted from Eqs. [3.16] for presentation purposes only.
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The derivative of z(x) is therefore taken with respect to the flow on the mth
and nth links. First,

0z(x)
axm - tm(xm)
as in Eq. [3.12a], and second,
dt,(x,)
P2X) _ 0t _ ) Ty form=n
ox, 0x,  0x, " [3.17]
0 otherwise

because of condition [3.5a]. This means that all the off-diagonal elements of
the Hessian, V2z(x), are zero and all the diagonal elements are given by
dt(x,)/dx,. In other words,}

rdtl(x )
dx, 0
0 dtdz(xz) 0
X
VZz(x) = 2 [3.18]
0 0 .
dt 4(x )
| dx, |

This matrix is positive definite since it is a diagonal matrix with strictly posi-
tive entries (all entries are positive because of condition [3.5b]). The objective
function is thus strictly convex, and since the feasible region is convex as well,
the UE program has a unique minimum.

This result means that there is only one flow pattern that minimizes
program [3.3]. As shown in the last section, this minimum is a user-
equilibrium flow pattern and consequently, the UE flow pattern can be found
by minimizing this program.

The strict convexity of the UE program was established above with
respect to the link flows. This program, however, is not convex with respect to
path flows and, in fact, the equilibrium conditions themselves are not unique
with respect to path flows. This point is demonstrated in the simple network
example depicted in Figure 3.4. The network includes two origin-destination
pairs connected by two paths each, as shown in the figure. The figure also
depicts the link performance functions and the O-D trip rates (g;5 = 2 and
425 = 3).

The equilibrium link flows for this example are given by x, = 2, x, = 3,

1Note that Eq. [3.18] is the Jacobian of the link-travel-time vector, t, with respect to the
link flows, x. The Jacobian matrix of a given vector is the matrix of first derivatives of each of the
vector components with respect to the arguments of these components.
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Figure 3.4 Equilibrium flows and path travel times in a network with two O-D
pairs and five links.

x3 =3, x, =2, and x5 = 5, as shown in Figure 3.4. These equilibrium flows
can be achieved by many combinations of path flows; for example:

=0, =2 f¥=3 and [P=
or
=2, fi¥=0, f¥=1 and [3=2

Both these path-flow patterns generate the same link-flow pattern shown in
Figure 3.4. In fact, any path-flow pattern that satisfies

S=2a, f1’=21—-0a), fP=3-20 and f3°=2a

for any value of a such that 0 < « < 1 will generate the equilibrium link-flow
pattern in this example. Thus there are, in principle, an infinite number of
equilibrium path flows.

The convexity of the UE equivalent minimization program with respect
to link flows can be established without analyzing the Hessian of z(x), by
making use of the properties of convex functions. The objective function of the
UE minimization consists of a sum each element of which is an integral of an
increasing function. Such an integral is always strictly convex (prove it) and
the sum of strictly convex functions is always strictly convex. Thus z(x) is a
strictly convex function which has only one minimum. This point is also the
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user-equilibrium solution for the network, as shown by the first-order con-
dition.

The next two chapters focus on solution algorithms for convex mini-
mization problems in general and the UE program in particular. Before dis-
cussing these algorithms, however, the next two sections of this chapter deal
with some related minimization programs.

3.4 THE SYSTEM-OPTIMIZATION FORMULATION

As mentioned in Section 3.1, the UE minimization program is a mathematical
construct that lacks an intuitive interpretation. It is merely an efficient method
for solving the user equilibrium equations. These equations describe the flow
pattern resulting from each motorist’s choice of the shortest travel-time route
from origin to destination.

This section examines a related minimization program including an ob-
jective function that has a straightforward interpretation and is subject to the
same constraints as the UE equivalent program. The objective function of this
program is the total travel time spent in the network. The flow pattern that
solves this program minimizes this objective function while satisfying the flow
conservation constraints (i.e., all the O-D trip rates are assigned to the net-
work). This program can be expressed as follows:

min 7(x) = Y. x,t,(x,) [3.19a]

subject to
LfE=ds Vrs [3.19b]
v=20 Vkrs [3.19¢]

As in the UE program, the objective function is formulated in terms of link
flows while the constraints are formulated in terms of path flows.

Program [3.19] is known as the system-optimization (SO) program. The
flow pattern that minimizes this program does not generally represent an
equilibrium situation. Except in special cases, it can result only from joint
decisions by all motorists to act so as to minimize the total system travel time
rather than their own. In other words, at the SO flow pattern, drivers may be
able to decrease their travel time by unilaterally changing routes. Such a
situation is unlikely to sustain itself and consequently the SO flow pattern is
not stable and should not be used as a model of actual behavior and equilibri-
um. (The only cases in which the SO flow pattern can be used to represent
equilibrium are those special cases in which the SO solution is identical to the
UE solution.)

The significance of the SO formulation and the resulting flow pattern is
that the value of the SO objective function may serve as a yardstick by which
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different flow patterns can be measured. Indeed, total (systemwide) travel time
is a common measure of performance of a network under a given scenario (see
Section 1.1). This measure can be computed in a straightforward manner given
the equilibrium flows, and it does not require any data in addition to those
required for the equilibrium analysis itself. Thus the flow pattern associated
with any proposed project can be measured in terms of the total travel time
associated with it relative to the minimum possible total travel time. By defini-
tion this minimum is obtained by solving the SO program.}

The necessary conditions for a minimum for the SO program are given
by the first-order conditions for a stationary point of the following Lagrangian
program:

L, 6) = s[x®] + X ﬁrs(q,, -2f i’) [3.20a]
rs k
where I(f, ii) has to be minimized with respect to f, subject to the set of
nonnegativity conditions
v=0 Vkrs [3.20b]

The variable #,, is the Lagrange multiplier (or the dual variable) associated
with the flow conservation constraint of O-D pair r—s (Eq. [3.19b]). The
first-order conditions for a stationary point of Eqgs. [3.20] are (see Egs. [3.9])

s ?%fg‘-) =0 and 6—za(ff;‘,~f’—) 20 Vkrs [3.21a]
as well as
alé(;;ﬁ) 0 Vrs [3.21b]
and
v=0 Vkurs [3.21c]

Again, the asterisks denoting the optimal solution in terms of f* and ii* have
been omitted from these equations, as in Egs. [3.9].

As in the case of the equivalent UE program, conditions [3.21b] and
[3.21c] simply restate the flow conservation and nonnegativity constraints,
respectively, and are therefore not discussed further. Conditions [3.21a] can be
expressed explicitly by deriving the partial derivatives of the Lagrangian with
respect to the path flows. These derivatives are given by

oL, @) _ 0 0

o g X)) + - S Z a,,(q,, - zk: f;’) Vmnl [3.22]

The partial derivative of Lagrangian [3.22] consists of two terms, which

+In addition, the SO program is used as a bound in many mathematical programs dealing
with network design.
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are calculated separately below. The second term is similar to the second term
of Eq. [3.10] and therefore (see Eq. [3.14])

afi;’"; Z rs(qrs Zf ) ﬁm" v l, m, n [323]

rs

The first term on the right-hand side of Eq. [3.22] includes the partial
derivative of the SO objective functions with respect to the flow on path /
between origin m and destination n. This derivative is given by

az(x 6x,, _ 6z(x)

:Z abet(x)

a

dty(x
=2 52",":[tb(xb) + X, %ﬂ ViImn [3.24]

b

This derivative can be interpreted, intuitively, by letting

di(x,)
dx,

The travel time f, can be interpreted as the marginal contribution of an
additional travelert on the ath link to the total travel time on this link. It is
the sum of two components: z,(x,) is the travel time experienced by that
additional traveler when the total link flow is x,, and dt,(x,)/dx, is the ad-
ditional travel-time burden that this traveler inflicts on each one of the trav-
elers already using link a (there are x, of them). Using the new travel time
variable, t,, Eq. [3.24] can be written as

s bas

Fo(Xa) = tolX) + X,

afm X0 = T 5337,

=™ Yimn [3.25]

where ¢™ is interpreted in a fashion analogous to t,. It is the marginal total
travel time on path I connecting O-D pair m—n.
The first-order conditions for the SO program can now be written as

frmEmn g y=0 YImn [3.26a]
em_ g, >0 Vi mn [3.26b]
YT =Gn, Vmn [3.26¢]

1
=0 Vimn [3.26d]

TMore accurately, an additional infinitesimal flow unit.
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Equations [3.26a] and [3.26b] state that, at optimality, the marginal total
travel times on all the used paths connecting a given O-D pair are equal. This
result is reminiscent of classical optimization results in which the marginals of
the functions minimized have to be equal at the solution point. The flow on a
given route is zero only if the marginal total travel time on this route is greater
than or equal to the marginal total travel time on the used routes. The value of
the dual variable #,, at optimality is the marginal travel time on all the used
paths between m and n.

For the solution of the program SO to be unique, it is sufficient to show
that the Hessian of Z(x) is positive definite. A typical term of this Hessian can
be obtained by taking the derivative of the objective function with respect to
x,, and x,, that is,

0Ax) 0

ox,  ax, Xata(Xs)

dty(x,)
= ty(xp) + X, ———
b\p. b de
and
dt,(x,) d’t(x,)
372(x) _ 2 ix, + X, a2 forb=a
0xp 0x, Vab [3.27]

0 otherwise

As in the UE program, this result represents a diagonal Hessian with the
nonzero terms 23(x)/0x2 given by Eq. [3.27]. This Hessian is positive definite
if all those terms are positive, which is the case if all the link performance
functions are convex. All performance functions dealt with in this text have the
general shape shown in Figure 3.2, which is convex, and thus dt2(x,)/dx2 > 0
and the diagonal terms are positive. Consequently, the SO program has a
unique minimum in terms of link flows.

The next section compares some aspects of the SO problem to the UE
program in order to illustrate the nature of the corresponding flow patterns.

3.5 USER EQUILIBRIUM AND SYSTEM OPTIMUM

It is interesting to note that when congestion effects are ignored, both UE and
SO programs will produce identical results. Imagine a network where t,(x,) =
t.. In other words, each link travel time is not a function of the flow on that
(or any other) link. In this case, the SO objective function would be

ix) =Y x.t, [3.28a]
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and the UE objective function

=Y j T do
a o
=Y x1, [3.28b]

which is identical to the SO objective function, Z(x).

Minimizing the objective function shown in Eqs. [3.28] subject to the
flow constraints [3.19b] and [3.19¢] is an easier task than solving either the
SO or UE problems. The reason is that in this case the link travel times are
not a function of the link flows, whereas, in general, both the SO and UE
problems assume that ¢, does vary with x,. The problem here is to find the
flow pattern that minimizes the total travel time over the network, given the
(fixed and known) values of the link travel times and the O-D matrix. The
solution of this problem is conceptually straightforward—all the flow for a
given O-D pair r-s, ¢,,, is assigned to the minimum-travel-time path connec-
ting this pair. All other paths connecting this O-D pair do not carry flow.
Consequently, this traffic assignment procedure is known as the “all-or-
nothing™ assignment. The resulting flow pattern is both an equilibrium situ-
ation (since no user will be better off by switching paths) and an optimal
assignment (since the total travel time in the system is obviously minimized).

The study of this special case is important in the development of solution
algorithms for the more general problem of equilibrium assignment. This
study is undertaken in Chapter 5, while the remainder of this section deals
with both the UE and SO formulations.

The similarity in the structures of the SO and UE programs can be
expressed in various ways. For example, if the travel times over the network
are expressed in terms of £,(x,), the solution of the UE program with these
travel times will produce an SO flow pattern. Similarly, the SO formulation
with link travel-time functions given by

a3

)= [ do [329]
a JO
will result in a UE flow pattern (see Problem 3.10).

In cases in which the flow over the network is relatively low, the network
links are not congested. The marginal travel time on each link, at this point, is
very small due to the shape of the link performance functions (see Figure 3.2);
the slope of this function is very small for low flow. In this case, the UE and
SO flow patterns are similar since the travel times are almost insensitive to
additional flows. The situation, then, is close to the fixed-travel-time case
described in Eqgs. [3.28].

As the flows between origins and destinations increase, the UE and SO
patterns become increasingly dissimilar. Large flows mean that some links
carry an amount of flow which is near their capacity. In that range the margin-
al travel time, f,(x,), becomes very large though the travel time itself remains
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bounded. Thus the differences between solving the same problem with the set
of marginal travel times {t,}, versus solving it with the travel times themselves,
{t,}, increase as the network becomes more congested.

To understand this better, consider the network example shown in
Figure 3.5. This network includes one O-D pair connected by two links
(paths). Assume that the top link (number 1 in the figure) is a freeway, while
the other link represents a city street. Hypothetical performance curves for
such links are shown in the figure. If the total O-D flow is g, the UE solution
will be the one shown in the figure with x; =0 and x, = ¢. In this case,
t,(q) < t1(0), and no user will choose to travel on the freeway. Note, however,
that the derivative of t,(x,) at x = g, dt,(q)/dx,, is relatively large and it is
therefore possible that £,(0) < t,(g). In other words, this solution is not optimal
from the system perspective. The SO solution to this problem may include
‘some flow using the top route as well. If one driver shifts from route 2 to route
1 (at the UE flow pattern shown in the figure), his or her own travel time will
increase—the driver will experience t,(0) instead of t,(g). The travel time ex-
perienced by each of the remaining drivers on route 2 will, however, decrease
by dt,(q)/dx, . Thus, from the system perspective, an increase of [t,(0) — t2(q)]
may be more than offset by a decrease of (@ — 1) dt,(g)/dx,. The SO flow
pattern is achieved only when

dty(x,) dty(x;)
dx, dx,

(Problem 3.12 includes a numerical example intended to demonstrate this

ty(xq) + x, = 5(x3) + X, [3.30]
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point.) Note that flow should still be treated as a continuous quantity; the
mention of an integer flow unit (one driver) above was made only to explain
the concept.

A failure to realize the fundamental difference between the normative SO
flow pattern and the descriptive UE flow pattern can lead to pseudo-
paradoxical scenarios. The most famous of these is known as “Braess’s para-
dox,” which is described below.

Figure 3.6a depicts a simple network including one O-D pair connected
by two paths and four links. The figure shows the two paths (numbered 1 and
2) and the congestion curves for each of the four links. Assume that 6 units of
flow are to travel between O and D (i.e., ¢ = 6). The user equilibrium flow
pattern can be solved for this network by inspection (due to the travel time
symmetry between the paths). Obviously, half the flow would use each path
and the solution would be

fi=3 f,=3 flow units
or, in terms of link flows,
x;3=3 x,=3, x3=3, x,=3 flow units
The associated link travel times are:
ty =53, t,=53, t;=30, t,=30 time units
and the path times are
c; =83, ¢,=83 time units

in accordance with the UE criterion. The total travel time on the network is
498 (flow - time) units,

Assume now that the local transportation authority decides to expand
the transportation network in order to improve flow and reduce delay (as well
as save energy and reduce pollution). This is to be accomplished by building a
new highway connecting the two intermediate nodes as shown in Figure 3.6b.
The figure shows the added (fifth) link, the performance function for this link,
and the new path (number 3) generated as a result of the link addition.

The old UE flow pattern is no longer an equilibrium solution since under
that flow pattern

xy=3, x;=3, x3=3, x,=3, x5=0 flow units
with path travel times
c; =83 ¢,=83 ¢3=70 time units

The travel time on the unused path (number 3) is lower than the travel time on
the two used paths, meaning that this cannot be an equilibrium solution. An
equilibrium flow pattern for the new network is given by the solution

X, =2, x;=2, x3=4, x,=4, x5=2 flow units
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Figure 3.6 Braess’s paradox example: (a) a user-equilibrium solution for a four-
link network (link numbers are shown in the squares); (b) an additional link creates
a UE solution with higher individual and total cost.



Chap. 3 Formulating the Assignment Problem as a Mathematical Program 77

with path flows

fi=fa=f3=2  flow units
and path travel times

C;=Cy=c3=92 time units

Figure 3.6b depicts a possible sequence of assignment of flow units that would
generate this equilibrium from the old one.

The important point to note here is that the total travel time in the
network is now 552 (flow - time) units as compared to 498 (flow - time) units
before the link addition. Not only did the total travel time go up, but the
travel time experienced by each traveler in the network increased from 83 time
units to 92 time units. The additional link seems to have made the situation
worse—congestion and delays increased instead of decreasing. This (seemingly)
counter-intuitive result is known as Braess’s paradox.

This “paradox” can, of course, be readily explained. The increase in
travel time is rooted in the essence of the user equilibrium, where each motor-
ist minimizes his or her own travel time. The individual choice of route is
carried out with no consideration of the effect of this action on other network
users. There is no reason, therefore, to expect the total travel time to decrease.

Looking at it from a mathematical programming point of view, the
supply action (adding a link) was taken with the intention of reducing the SO
objective function. The flow, however, is distributed according to the UE
objective function, so the resulting pattern does not necessarily reduce the SO
objective function. Had the flow before and after the link addition been as-
signed according to the SO objective function, the total travel time could not
have increased with the addition of the new link. (Prove it.) Note that the
value of the UE objective function did go down from a value of 399 before the
link addition, to a value of 386, after the link addition.

From a more general perspective, Braess’s paradox underscores the im-
portance of a careful and systematic analysis of investments in urban net-
works. Not every addition of capacity can bring about all the anticipated
benefits and in some cases, the situation may be worsened. In fact, traffic
engineers have known for a long time that restrictions of travel choices and
reductions in capacity may lead to better overall flow distribution patterns.
This, for instance, is the underlying principle behind many traffic control
schemes, such as ramp metering on freeway entrances.+

ftRamp metering is the process of restricting the entry of flow onto a freeway, usually by
installing a traffic light at the entrance ramp. This light controls the number of cars allowed to
enter the freeway during certain times of the day (typically, the peak traffic period). In other
words, it effectively lowers the capacity of one of the network links (the ramp). The metering
causes drivers to use alternative routes by raising the travel time associated with the freeway
entrance. This reduction in capacity leads to better overall conditions and lower total delay
compared with the situation associated with no controls.
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3.6 SUMMARY

The focus of this chapter is on the formulation of the traffic assignment prob-
lem as a mathematical program. This program is given by Eqs. [3.3]. To
demonstrate that the solution of this program is equivalent to the solution of
the UE conditions, it is shown that the equilibrium equations are, in fact, the
first-order conditions of the program. This guarantees that the equilibrium
conditions hold at any stationary point of the program. Next, it is shown that
this program is strictly convex, meaning that it has only one stationary point
which is a minimum. All this proves that instead of solving the equilibrium
equations directly, the equilibrium flows can be determined by minimizing the
equivalent mathematical program. This approach to the solution of equilib-
rium problems is adopted throughout this book.

The nature of the user equilibrium and its equivalent minimization pro-
gram are illustrated in this chapter by contrasting this formulation with the
system-optimization formulation. The SO formulation calls for the flow pat-
tern that minimizes the total travel time in the system. It is generally not an
equilibrium flow pattern, since under it some travelers can be better off by
unilaterally changing routes. It represents, however, the flow pattern for which
the total systemwide travel time is the lowest. The difference between the UE
equivalent minimization and the SO program is that the former is devised to
describe motorists’ behavior, whereas the latter is normative in nature. A
failure to understand these differences may lead to “paradoxical” situations
when travel choices are added to the network but all users are made worse off.
Such situations highlight the noncooperative behavior represented by the user
equilibrium.

3.7 ANNOTATED REFERENCES

The formulation of the user-equilibrium problem as a mathematical pro-
gram was first developed by Beckmann et al. (1956), who proved the equival-
ency and the existence and uniqueness of the solution. Boyce (1981), in an
editorial note, traces the historical development of the concept of equilibrium
assignment, including many algorithms and problem formulations. The differ-
ences between the user-equilibrium and system-optimizing flow patterns over a
transportation network are discussed by Potts and Oliver (1972) and Newell
(1980), from whom the example shown in Figure 3.5 was taken. The paradox
presented in Section 3.5 was discussed and explained by Murchland (1970)
following Braess (1968). A case in which this phenomenon actually took place
is reported by Knddel (1969). Newell (1980) pointed out the evident nature of
this phenomenon in the context of standard traffic engineering practice.
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3.8 PROBLEMS

3.1. Consider the network in Figure P3.1. It includes two O-D pairs (1— 4 and 2— 4)
and five links. (The link numbers are shown on the respective links.) Devise a
numbering system for the paths and identify the values of all the indicator vari-
ables. Write the link—path incidence matrix for this network. Use this matrix to
get x5 from f.

Figure P3.1

3.2, Solve the network example in Figure 3.3 by setting up the equivalent mini-
mization and by using Lagrange multipliers. Comment on the value of the multi-
pliers at the solution point.

3.3. Find the user-equilibrium flow and travel times for the network shown in Figure

P3.2, where
ty=2+x2
t,=3+x,
ty=1+2x3
ty=2+4x,

(The link numbers are shown on the respective links.) The O-D trip rate is 4 units
of flow between nodes 1 and 3.

1 3
Figure P3.2

3.4. Solve for the equilibrium flows in the network example depicted in Figure 3.4. Set
up the UE program and solve the first-order conditions.

*3.5. (a) Express the Hessian of the UE objective function in terms of path flow over
the network depicted in Figure 3.4. Show that it is not a positive-definite
matrix.

(b) Show that the path-flow Hessian of the UE objective function is usually not a
positive-definite matrix. For what type of network will this Hessian be posi-
tive definite?

3.6. Show that the integral of an increasing function is always a convex function.
3.7. Find the system-optimizing flow pattern for the network example in Figure 3.3.
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Compare this flow pattern to the UE flow pattern and comment on the differ-
ences.

3.8. Find the system-optimizing flow pattern for the network example discussed in
Problem 3.3. Compare it to the UE flow pattern.

3.9. Does the SO program have a unique solution in terms of path flows? Explain
your answer.

3.10. (a) Show that the solution of the SO program with travel times i,(x,) (see Eq.
[3.29]) is an UE flow pattern.
(b) Show that the solution of the UE program with travel times f(x,) (see Eq.
[3.24] and the definition that follows) is an SO flow pattern.

3.11. Show, analytically, that as the flows over the network become smaller (and con-
gestion decreases), the SO flow pattern tends to grow in similarity to the UE flow
pattern.

3.12. Consider the network of two routes (a freeway and a city street connecting one
O-D pair) shown in Figure 3.5. Let

t1=3+0.5x
t2=1+x2
g=15

(a) Find the UE solution and demonstrate that it is not an SO solution.
(b) Find the SO solution and demonstrate that it is not an UE solution.

3.13. Solve for the system-optimizing flow pattern over the network depicted in Figure
3.6 before and after the link addition. Show that the total travel time decreases.
Explain why the total travel time would never increase if a link is added and the
flow pattern follows the SO rule.

3.14. Assume that a transportation planner can set a toll on each one of the paths
connecting the origins to the destination shown in Figure P3.3.

£ %
V Figure P3.3

(a) Given that the O-D flow is g and the performance function on each link is
t,(x,), how should the tolls be set so that the total travel time in the network
is minimized?

(b) Assuming that the link performance functions are linear, derive a closed-form
expression for these tolls.

(c¢) Comment about the feasibility of this approach in real urban networks.
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This chapter describes some of the most common minimization algorithms. It
is not a comprehensive review, but rather a presentation of methods that are
applicable to the solution of minimization programs of the type formulated in
this text as well as methods that bring out some important principles. The
discussion deals separately with the minimization of a function of a single
variable and the minimization of multidimensional functions.

The focus of the discussion is on the mechanics of the algorithms and,
therefore, proofs of convergence are not given explicitly. Such proofs can be
found in most of the nonlinear programming books mentioned at the end of
this chapter. The last section is devoted exclusively to one algorithm—the
convex combinations method. This algorithm is the basis for solving many
equilibrium problems.

4.1 ONE-DIMENSIONAL MINIMIZATION

This section deals with the minimization of a nonlinear function of a single
variable, z(x). The regularity conditions mentioned in Chapter 2 are still as-
sumed to hold; that is, it is assumed that x lies within some finite interval
[a, b] and that z(x) is continuous and uniquely defined everywhere in that
interval. These requirements ensure the existence of a finite minimum of z(x)
for some x in the interval of interest. For the purposes of this discussion it is
assumed that z(x) is ditonic over the interval [a, b], implying that it has only a
single, unique minimum in that interval.

81
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The study of one-dimensional optimization methods is important mainly
because such an optimization (or line search) is in many cases a part of an
algorithm designed to find the minimum of multivariate functions. Fur-
thermore, some of the principles imbedded in the algorithms described below
are used in minimizing multivariate functions as well.

This section includes two basic approaches to single-dimensional mini-
mization. The first is known as interval reduction and includes the golden
section and the bisection methods. The second utilizes quadratic curve fitting
and includes Newton’s search, the false position method, and the quadratic
approximation method.

Interval Reduction Methods

Interval reduction methods involve iterative procedures in which each
iteration is focused on a current interval. The current interval in the nth
iteration is a portion of [a, b], denoted [a", b"], which was determined to
include the minimum point, x*. At each iteration this interval is examined and
divided into two parts: the part in which the minimum cannot lie and the
current interval for the next iteration. The part in which the minimum cannot
lie is discarded and the procedure is repeated for the new current interval.
These procedures start by designating [a, b] as the first current interval (i.e.,
a® = a and b° = b). The interval is then reduced at each successive iteration
until a good approximation (a small enough current interval) for x* is ob-
tained.

To understand this reduction process better, let the size of the current
interval at iteration n be denoted by I, and let r, = I,,.. /I, denote the interval
reduction ratio for the nth iteration. Since there is no reason to believe that
any of these algorithms would work better (in terms of interval reduction) in
any given iteration, the reduction ratio is usually a constant, (ie., r, = r for
every n).

Interval reduction algorithms are typically terminated when the size of
the interval of interest is less than a predetermined constant. The estimate of
x* is then the midpoint, X, of the interval remaining after N iterations, Iy [i.e.,
% = (a” + bY)/2]. If the optimum has to be estimated with a tolerance of +e¢
(i.e., x* must lie within X & €), then the number of required iterations can be
calculated as a function of the length, I, of the initial interval (see Problem
4.1). The number is

[4.1]

N = INT [log 2¢ —log I, N 1]

log r

where INT [ - ] means the integer part of the argument.

The various interval reduction algorithms differ from each other only in
the rules used to examine the current interval and to decide which portion of it
can be discarded.
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Golden section method. The interval reduction strategy of the
golden section search is based on a comparison of the values of z(x) at two
points, xi and x} (where xj < x%). These points are within the interval of
interest [a", b"] at the nth iteration. The choice rule for selecting the interior
points is the unique feature of this method; it is explained below, following an
explanation of the interval discarding process.

The discarding mechanism is demonstrated in Figure 4.1, depicting a
ditonic function, z(x), which has to be minimized in the interval [a", b"]. The
top drawing (denoted “iteration n”) shows the two interior points at the nth
iteration x7 and x%. In this case, z(x]) > z(x}). Since the function is ditonic, the
optimum must lie “to the right” of xj (i.e, x* > x}), and thus the interval
[@", x]] can be discarded. This completes the nth iteration. The new current
interval [for the (n + 1)st iteration] is [a"*!, b"*!'], where a"*' = x] and
b"*! = b". The interval reduction process continues with two new interior
points, x3*! and x%" !, as shown in the bottom drawing of Figure 4.1 (labeled
“iteration n + 1”). Note that if the function was such that z(x}) was greater
than z(x}), then the interval [x%, b"] would have been discarded at the nth
iteration. This is the case in iteration n + 1, where z(x?*') < z(x%"'). In this
case the interval [x%*!, b"*'] is discarded and the new current interval is
[a"*!, x%*1] (since x* cannot be “to the right” of x%*1).

The essence of the golden section method is in the rule used for choosing
x} and x%, given an interval [a", b"]. This rule is designed to minimize the
number of function evaluations. Given a new current interval the algorithm
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needs two interior points to continue. The golden section procedure makes use
of one of the interior points from the last interval (where the function value is
already known). Only one new point where the function value needs to be
evaluated is therefore added at each iteration.

This arrangement is illustrated in Figure 4.1, where, when going from the
nth to the (n + 1)st iteration, only one interior point has to be added and

evaluated (x}"! in the bottom drawing); the other is available from the nth
iteration since x7"! = x% [so z(x?*!) need not be evaluated because it equals

z(x%)]. Such a sequence of interior points can be obtained, while keeping a
constant reduction ratio, by using r = 0.618 [more precisely, r = 12~(\/§ - D]
Accordingly, the interior points are selected so that x% is 0.618 of the interval
length to the right of a” and x] is 0.618 of the interval length to the left of b"
(or 0.382 of the interval length to the right of a"). The quantity %(\/5 —1)is
known as the “golden section,” from which the method derives its name.

Note that such a sequence of intervals leads to a situation in which

L=I1,+1,:; [4.2]

as shown in Figure 4.1 (see Problem 4.2).

A flowchart of the algorithm is presented in Figure 4.2.1 This algorithm
takes as input the function to be minimized, the interval end points, and the
accuracy required. The output includes the estimate of the optimum, X, the
number of iterations performed, N, and the accuracy actually obtained,
1(b" — a"). Note that given r, the number of iterations needed to achieve a
given degree of accuracy, can be determined a priori by using Eq. [4.1].

A well-known search method similar to the golden section is the Fibon-
acci algorithm mentioned in the references given in Section 4.5. It is slightly
more efficient than the golden section procedure, due to better positioning of
the first two interior points. From a practical point of view, however, the small
advantage offered by this algorithm does not justify its detailed study (see
Problem 4.5) herein.

Bisection method. In many cases, the derivative of the function to
be minimized can be evaluated easily and the search for the minimum can
therefore be expedited. The method of interval bisection exploits the fact that a
ditonic function is monotonic on each side of the minimum. In other words,
the derivative of the function to be minimized, dz(x)/dx, is negative for x < x*
and positive for x > x*.

The algorithm computes the derivative of z(x) at the midpoint of the
current interval, [a", b"]. Denote this point by x". If dz(X")/dx < O, then x* >
X", meaning that the interval [a", "] can be discarded. The next current inter-
val will thus be [X", b"]. If dz(X")/dx > 0, then x* < X", and the search can

+The notation “:=" used in the figure indicates the equality sign in programming
languages (i.e., the assignment of a variable’s value). For example, n:=n + 1 means an increment
of the counter n by 1.
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Input

r = 0.6180333

x = [b—alll - rl+a
xg:=[b—alr+a
n:=n+1 |t
\
Yes No
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No No
Xpi=x, Output o
£ on 1
Yalb — a]
- x = [b-a]ll —=r]l+a xgi=1[b—alr+a :

‘ Stop >

Figure 4.2 Flowchart of the golden section algorithm.

focus on the interval [a", X"]. Figure 4.3 depicts a flowchart of the bisection
method (known also as Bolzano search).

As with the golden section method, a convergence criterion can be speci-
fied, causing the precedure to terminate (the estimate of x* is taken at the
middle of the remaining interval) when this criterion is met. The reduction
ratio for this method is r = 0.5, and Eq. [4.1] can be used to determine the
number of iterations required for a given accuracy. For example, only six
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Input

i
Stop

Figure 4.3 Flowchart of the bisection algorithm.

iterations of the bisection method are required to determine the minimum of
z(x) with an accuracy of +1% of the length of the original interval. The
golden section method, by way of comparison, would require nine iterations,
involving 10 evaluations of z(x) to reach this degree of accuracy. Table 4.1
shows the ratio of the length of the current interval and the original interval,
after N function evaluationst for each of the two interval reduction methods
discussed in this section. The table demonstrates that the convergence rate of
the bisection method is almost twice that of the golden section method. The
bisection method requires, however, that the derivative of z(x) be evaluated in
every iteration. This may not be easy in some cases, and thus this algorithm

+Note that the first iteration of the golden section method requires two evaluations of z(x).
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TABLE 4.1 Convergence Rate for Interval Reduction Methods
(Iy /1, versus N for each algorithm)

Number of Size of Current Interval as a Fraction
Function of the Initial Interval
Evaluations,
N Golden Section Bisection
2 0.6180 0.2500
3 0.3819 0.1250
4 0.2361 0.0625
5 0.1459 0.0313
6 0.0902 0.0156
7 0.0557 0.0078
8 0.0344 0.0039
9 0.0213 0.0020
10 0.0132 0.0010

should be preferred to the golden section algorithm only in cases in which the
calculation of the derivative is not much more difficult than calculating the
function itself.

All the interval reduction methods produce, after a given number of
iterations, a final interval [a", b¥] which contains the minimum. If the mini-
mized function is convex, the optimal value of z(x) can be bounded. As men-
tioned in Section 2.1, a linear approximation to a convex function will always
underestimate it. Thus

2(x*) > z(a") + dzd(—ZN) (x* — a) [4.3a]
and
2(x%) > 2(b") + ‘—lf(d—i’cﬂ (x* — bY) [4.3b]

Since the value of x* is not known, the value of b" can be substituted for x* in
Eq. [4.3a], and a" can be substituted for x* in Eq. [4.3b]. The higher of the
two lower bounds suggested by these linear approximations is a tighter lower
bound for z(x*). Alternatively, the two approximations can be solved simulta-
neously for an even tighter bound.

Curve-Fitting Methods

When the function to be minimized, z(x), is not only ditonic but also
relatively smooth, such smoothness can be exploited by algorithms that are
more efficient than the aforementioned interval reduction methods. Curve-
fitting methods work by iteratively improving a current solution point. The
characteristics of the function at the last point (or points) are utilized to
generate a smooth approximation for z(x). (All the methods described in this
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section use a parabola for this purpose.) The new point is taken to be at the
minimum of this approximation as explained below in the discussion of specif-
ic algorithms. These algorithms differ from each other in the technique used to
generate the approximation of the objective function.

Curve-fitting methods exhibit many of the characteristics of general
minimization methods in that (unlike interval reduction methods) they gener-
ate a series of points x', ..., x¥, ... that converge to the minimum, x*. Each
point is generated by applying some algorithmic procedure to the previous
point, and the algorithm terminates when a convergence criterion is met.

The convergence criterion for curve-fitting methods can be based on
various rules. These rules are typically based on the required accuracy of the
solution or on “cost-effectiveness” considerations. For example, the algorithm
can be terminated when the marginal contribution of an iteration to the
improvement in the solution becomes small. In other words, if

Z(x" ) —z(x") < k

where xk is a predetermined constant (tolerance), the algorithm terminates.
Alternatively, a dimensionless constant based on the relative change between
successive solutions (ie, [z(x"™!) — z(x")]/z(x"') can be used to test for
convergence.t In many cases the algorithms can terminate on the basis of the
change in the variable value (e.g., when |x" — x"~!| < x’ where x’ is some
other predetermined constant). The closeness of any particular solution to the
minimum can also be tested by checking the derivative of z(x") at x". If this
derivative is close to zero, the algorithm terminates.

The choice of convergence criterion is based on the function to be mini-
mized, the particular algorithms used, and the context in which the problem is
solved. This point is discussed in later chapters in connection with some
specific problems. The next paragraphs present some of the common curve-
fitting algorithms. As mentioned above these algorithms differ from each other
in the method used to approximate z(x).

Newton’s method. Newton’s method approximates z(x) at each
iteration with a quadratic fit at the current point, x". The fitted curve, (x), is
given by _

dz(x") 1 d?z(x")
5 — n 7 — x") 4 = ——=
8 = 2e) + =~ (x = x) + 5 3
This curve, Z(x), is a parabola that agrees with z(x) at x" up to second deriva-
tives. The next solution, x"*!, is located at the point that minimizes 2(x) [i.e.,

(x — x™? [4.4a]

+These rules have been devised for descent method, that is, for algorithms in which
2(x') > 2(x?) > - > z(x") > - - - = z(x*). While curve-fitting algorithms are not strictly descent
methods (why?), they tend to behave as if they were after the first few iterations, and thus the
convergence criteria above do apply.
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where dZ(x)/dx = 0]. This point is given by

atl _ on dz(x")/dx
=X T Baedx?

Equation [4.4b] specifies, then, the algorithmic step, that is, the rule by which
x"*1 is obtained from x". (Equation [4.4a] is included here only to explain the
basis of this rule; it need not be evaluated when the algorithm is executed.)

Newton’s method is very efficient, but it requires, of course, that z(x) be
twice differentiable. It also requires that the first and second derivatives be
evaluated at every iteration. In some cases this may be very costly in terms of
computational effort.

x [4.4b]

False position method. The false position method is similar to
Newton’s search. The only difference is that, instead of using the second de-
rivative at x", it uses the first derivative at x"~! and at x" to approximate the
second derivative. The approximation is

d?z(x") _dz(x"” Yjdx — dz(x")/dx
dx? ~ X"l "

[4.5]

This expression can be substituted for the second derivative in Eq. [4.4b] to
obtain the algorithmic step of the false position method. This method can be
used when the second derivatives are unavailable or difficult to evaluate.

Quadratic fit method. A third curve-fitting method uses no deriva-
tives at all. The quadratic fit is based on three points, x,, x,, and x;. At the
nth iteration, these points are a subset of the series of solution points x!, ...,
x". As with the other curve-fitting methods, the new solution point is chosen at
the minimum of the fitted curve. This point is given by

av1 L (x3 — x32(x;) + (x3 — x}z(x,) + (x] — x3)z(x5)
2 (x3 — x3)2(x;) + (x3 — x,)2(x2) + (X1 — X3)z(x3)

[4.6]

The set of three points used in the next iteration includes x"*?, and the two
points out of x,, x,, and x; with the smallest value of z(x). These points are
labeled x,, x,, and x; and the procedure is repeated (see Problem 4.9).

For a given problem, the choice among the various curve-fitting methods
should be guided by the difficulty of calculating the derivatives. If this calcula-
tion can be easily accomplished, Newton’s method is the appropriate algo-
rithm, whereas the quadratic fit method is preferred when even the first deriva-
tive is difficult to evaluate. In general, curve-fitting methods are faster than
interval reduction methods when applied to functions that are relatively
smooth. Curve-fitting methods should also be used in cases where the interval
within which the minimum lies is not obvious (e.g., if the function to be
minimized is unconstrained).
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This concludes the discussion of algorithms for minimizing single-
variable functions. The next section describes some approaches to the mini-
mization of multivariable functions.

4.2 MULTIVARIATE MINIMIZATIONY}

This section deals with the minimization of a nonlinear convex function of
several variables. The algorithms included here are all descent methods. In
each case, the algorithm generates a point x"*! = (x7*1, ..., xj*1!) from x" =
(x4, ..., x7), so that z(x"*') < z(x"). The focus of the discussion is on some
principles of minimization. Particular procedures are mentioned only to illus-
trate these principles.}

The core of any algorithmic procedure is the calculation of x**! from x”".
This algorithmic step can be written in standard form as

X" =x" 4 q,d" [4.7a]

where d" is a descent direction vector (d}, ..., d}) and «, is a nonnegative scalar
known as the move size (or “step size”). This formula means that at point x" a
direction in which the function is (locally) decreasing, d”, is identified. The
move size, a,, determines how far along d" the next point, x"**, will be.§ As
Eq. [4.7a] is executed, each component of the variable vector is updated, that
is,

XMy pod fori=1,2...,1 [4.7b]

Consider, for example, the function z(x,, x,) = (x; — 6)*> + 3(x, — 4)* de-
picted in Figure 4.4 and assume the current solution to be x" = (3, 1). The
dashed line in the figure is a tangent to the contour of z(x) at x”. This line
separates the directions of descent at x" from the directions of ascent. The
figure depicts several descent directions (denoted d") emanating from x", and
also shows the direction of the gradient [denoted by Vz(3, 1)] at this point.
The value of z(x) at any point, x, located a small distance away from x" along
one of the descent directions, is smaller than z(x"), the value of the function at
x". Note that the gradient vector is perpendicular to the tangent of the contour
line at x". Consequently, any descent direction can be characterized by the
inequality Vz-d < 0. In other words, the cosine of the angle between the

tReaders who are not interested in the principles of minimization algorithms may skip this
section and go directly to the description of the convex combinations algorithm in Section 4.3.

tProofs of convergence are not within the scope of this text. Several of the references
mentioned in Section 4.4 contain such proofs. In particular, Zangwill's “global convergence
theorem ” specifies the necessary and sufficient conditions for algorithmic convergence.

The term “move size™ for «, assumes that the direction vector is normalized so that

d? + d? + -+ + d? = 1. This normalization does not have to be performed in practice, meaning

that the size of the move will actually be the product of u, and the magnitude of the direction
vector.
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1 2=84

vz(3,1)

Figure 44 Contour lines of z(x,, x,) = (x; — 6)> + 3(x, — 4)* and the range of
descent directions at (x,, x,) = (3, 1).

gradient direction and the descent direction is always negative. Any direction
vector, d, is a descent direction if and only if this inequality holds.

The magnitude of the step along the chosen direction is determined by
the move size, ,. If, for example, the chosen direction is d" = (1/./2, 1/\/5), a
move of 3,/2 would lead to the optimum in one iteration. (Check this.) If the
descent direction is d" = (0, 1) [pointing straight up from (3, 1)], any step size
that is smaller than a, = 6 will cause a decrease in the objective function [as
compared to z(3, 1) = 36]. The minimum value of z(x,, x,) along this direction
is at (3, 4). This point will be attained by using a move size, o, = 3 (verify this
graphically).

The algorithmic iteration described in Eq. [4.7] can be used to summa-
rize all descent methods for unconstrained minimization. These methods differ
mostly in the rule used for finding the descent direction. The move size is
typically chosen so that the objective function is minimized along the descent
direction.

If the function to be minimized is constrained, the minimization algo-
rithms have to be modified so that a desired but infeasible direction can be
changed according to some appropriate rule. Similarly, if the move size leads
outside the feasible region, it has to be truncated so that feasibility is main-
tained.t

The remainder of this section describes some issues related to mini-

tNote that conserving feasibility is not mandatory, and many problems can be solved
without it. The algorithms discussed in this text, though, ensure that the final (optimal) solution is
feasible by ensuring that the entire sequence of solution points is feasible.
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mization techniques as well as specific descent algorithms for unconstrained
and for constrained problems. These algorithms contain principles and ideas
that are important to the analysis of network equilibium. The programs to
which these algorithms are applied are assumed herein to be convex (that is,
having a convex objective function defined over a convex feasible region).

Unconstrained Minimization Algorithms

The convergence criteria used to terminate the algorithmic iterations are
an extension of the methods used in one-dimensional search algorithms. For
instance, the convergence criterion can be based on the marginal contribution
of successive iterations, that is, the closeness of z(x") and z(x"!). In other
words, terminate if

[z(x" 1) — z(x"] < k [4.8a]
Alternatively, the algorithm can be terminated if the elements of the gradient
vector are close to zero, for example, ift
dz(x"
max { 9tx)
i ox;
In some cases, criteria that are based on the change in the variables between
successive iterations are used. These include, for example,

n__ yn—1
max {u—'} <k [4.8¢]

n—1
i Xi

} <k {4.8b]

or
YO —x")P <k [4.8d]
In these criteria (Eqs. [4.8]), « is a predetermined tolerance (different for each
criterion) selected especially for each problem based on the desired degree of
accuracy.
The focus of the following discussion is on the commonly used steepest
descent algorithm.

The method of steepest descent. The method of steepest descent
is perhaps the most intuitively logical minimization procedure. The direction
of search is opposite to the gradient direction, while the move size is chosen so
as to minimize z(x) in that direction. This means that each move is made in the
direction in which z(x) decreases (locally) the most (i.e., where the function is
steepest). The length of each move is determined by the points (along this
direction) where the value of z(x) stops decreasing and starts increasing.

+The notation max; {-} stands for the maximum, over all possible values of i, of the
arguments in the braces.
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The basic iteration is given by
X"t =x" 4+ o[ — Vz(x")] [4.9]

where a, is the optimal move size. The gradient can be found either analyti-
cally or, when the derivatives are difficult to evaluate, by using numerical
methods. If Vz(x) can be derived analytically, it has to be supplied as an input
to the minimization routine. Alternatively, it can be computed numerically by
approximating the partial derivative of z(x) with respect to each x;. In other
words,

0z(x") ~z(..., XP_ g XP+AX, XP gy oo ) —2(eeay XT L)

ox; Ax;

where Ax; is a small interval associated with the ith component of x. The
evaluation of the gradient at x" therefore involves I computations of z(x) in
addition to z(x").

In order to find the value of «,, the function

Z[x" + a( — Vz(x")] [4.11]

has to be minimized with respect to « subject to the constraint that « > 0. The
value of « that minimizes Eq. [4.11] is «,. Finding «, is a one-dimensional
minimization problem that can be solved by using any of the techniques
mentioned in Section 4.1. If the problem is simple (and convex), «, can be
determined analytically by solving¥

[4.10]

d n n _
7q X"+ A= Vzx7)] = 0

rather than using a numerical method. Note that the interval reduction meth-
ods mentioned in the preceding section cannot be naturally applied here since
the problem is not constrained and therefore no initial interval exists. Any one
of the curve-fitting methods, however, would be appropriate for this mini-
mization.

The steepest descent algorithm is a descent method, meaning that the
objective function value decreases at every iteration. For objective functions
satisfying certain regularity conditions this method converges to a local mini-
mum, which would naturally be a global one for strictly convex functions.

Figure 4.5 depicts a typical sequence of solutions generated by the steep-
est descent algorithm. An interesting property of this method is that the suc-
cessive search directions are perpendicular to each other, that is, d* . d"*! = 0.
This follows from the fact that x"*! is located at a point where the rate of
change in z(x) with respect to movement in the direction d” is zero, due to the
optimization in the line search. Thus the gradient (and its opposite direction)
at x"*! is perpendicular to the direction of d".

For a general quadratic form (the contour lines of which are ellipsoids),

tNote that the point « = 0 has to be checked as well.
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Figure 4.5 Convergence pattern of the steepest descent algorithm; note the zig-
zagging of the consecutive descent directions.

this “zigzagging” becomes more pronounced as the eccentricity (the ratio of
the axes) increases. On the other hand, if the contours are circular, the steepest
descent method converges in a single step. The zigzagging means that the
steepest descent method requires a relatively large number of iterations. Sev-
eral heuristic procedures to alleviate this problem are suggested in the refer-
ences mentioned in Section 4.5. These methods generally choose a direction
other than the opposite gradient every few iterations.

Other methods. The operations research literature includes many
other minimization approaches including second order methods in which the
search direction is determined by using information regarding the second de-
rivatives of the objective function. Most of these methods are not particularly
applicable to the solution of the problems arising in the course of studying
urban networks. These problems are typically large (i.e., including many vari-
ables), a characteristic that often precludes certain calculations such as the
determination of the Hessian (which is the matrix of second derivatives) or
even approximations of this Hessian.” The following paragraphs, then, are
provided mostly for completeness.

One of the most efficient minimization algorithms is Newton’s method.
This method is a straightforward extension of the corresponding line search
procedure (described in Section 4.1). The objective function z(x) is approxi-
mated by a second-order Taylor series. This approximation is then minimized
and the new solution is taken to be the point that minimizes the approxi-
mation. The resulting algorithmic step is given by

X"t = x" — Vz(x") - [H(x")] ! [4.12]

where H(x") is the Hessian of z(x) at x = x", and [-]~! denotes the matrix
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inversion operator. This method can be expressed in the standard form [4.7a]
by defining 4" = —Vz(x") - [H(x")] "' and «, = 1,V n.}

Newton’s method is more efficient than the steepest descent method
because its search direction uses more information about the shape of z(x) at
x". It requires, however, the calculation and inversion of the Hessian matrix at
each iteration, a task that is computationally intensive even for medium-size
problems, and totally impractical for large ones.

The approach underlying quasi-Newton methodst is to try to construct
an approximation to the inverse Hessian by using information gathered in the
minimization process. The current approximation is used at each step to
modify the gradient direction and the process is usually coupled with a line
search to determine the optimal move size. The particulars of these methods
can be found in the references mentioned at the end of this chapter.

Constrained Minimization Algorithms

The study of transportation network equilibrium problems involves
equivalent mathematical programs which include exclusively linear con-
straints. The discussion of constrained minimization is limited, therefore, to
these types of constraints. The techniques reviewed in this section are appli-
cable to both equality and inequality constraints, even though most network
problems involve only equality constraints (apart from the nonnegativity con-
straints).

The basic framework outlined in the preceding section for unconstrained
minimization (i.e., finding a descent direction and advancing by an optimal
amount along this direction) can be used to describe algorithms for con-
strained optimization as well. The added difficulty in constrained optimization
is to maintain feasibility. In other words, the search direction has to point
toward a region where some feasible solutions lie, and the search for the
optimal step size has to be constrained to feasible points only. The focus of
this section is on these topics, which are common to all feasible direction
methods. The emphasis on this minimization approach stems from its impor-
tance in equilibrium analysis. Most current approaches to minimizing equiva-
lent equilibrium programs can be cast as feasible direction methods. In partic-
ular, the convex combinations algorithm, which is the basic tool for many
equilibrium analyses, is such a method. This algorithm is described in detail in
Section 4.3.

The discussion in this section does not mention explicitly convergence
criteria since those can be similar to the ones used for unconstrained mini-

tNote that in order to ensure that Newton’s is a descent method, especially at the initial
iterations, the move size has to be optimized. In such cases a,will not equal 1.

1These methods are also called variable metric approaches. The name stems from a partic-
ular interpretation of the technique used to define the search direction—it can be seen as an effort
to change the scale of the axes of the vector x so that z(x) is close to a spherical shape and the
gradient points in the right direction.
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mization (see Eqs. [4.8]). Note only that the minimum of a constrained pro-
gram is not necessarily a stationary point of the objective function, and thus a
gradient-based convergence criterion (such as Eq. [4.8b]) is not applicable.

As mentioned above, the two issues associated with maintaining feasibil-
ity are that the search direction has to point in a direction in which at least
some feasible points lie and that, given such a search direction, the step size
would not cause infeasibility. These two issues are described below in reverse
order. First the problem of maintaining feasibility given the search direction
and then the problem of finding a feasible direction.

Maintaining feasibility in a given direction. Consider the stan-
dard form of a minimization program (see Chapter 2)

min z(x) [4.13a]
subject to
Y h;x;=2b; Vjef [4.13b]

where the constraints are all linear (the nonnegativity constraints are included
in Egs. [4.13]). Assume further that the current solution is x”, a point that may
lie on the boundary of the feasible region. In this case some of the constraints
are binding, that is,

L hyxi=b Vjeg" [4.14a]

where #" is the index set of the binding constraints at the nth iteration. The
other constraints are not binding, that is,

Yhyxi>b;  Vj¢ g [4.14b]

Once a feasible descent direction, d*, is obtained, the maximum move size
that can be taken without violating any constraints should be determined.
This maximum can then be used to bracket the search along the descent
direction, so the new solution will necessarily be feasible. Note that only the
constraints which are not currently binding (i.e., the constraints indexed by
j ¢ #") might pose a problem in this regard (why?—see Problem 4.17) and
thus only the inequality constraints (all j ¢ #") need be considered. For
x"*1 = x" 4+ a,d" to be feasible, the (currently) nonbinding constraints must
not be violated by the new solution, x"*!. In other words, the following must
hold:

hi(x? + o, df) = hijx?+anzhijd?2bj Vi¢g F"
T i 1

Obviously, if Y hyd; =0 for a given constraint [, there is no problem in
satisfying the above mentioned requirement, since the current solution is feasi-
ble (i.e., Y, hyxf = by). (Intuitively, this means that the constraints for which
Y hyjd? > 0 will not be violated by the search direction.) Only in the cases
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where Y ; h;d? <0 would there be a possible violation. Thus the maximum
possible value of a,,, a'®*, is given oy

op®* = min

" Vjeiﬂw

where the set #" includes all the constraints that are nonbinding and for
which Z,- h;;df <0 at x". In other words, the maximum move size is deter-
mined by the first constraint to be violated when moving along the descent
direction. The optimal move size, «,, can now be determined by solving

min z(x" + ad”) [4.16a]

a

[4.15]

subject to
0<a<ams [4.16b]

with any of the interval reduction methods of Section 4.1.

Figure 4.6 demonstrates the various types of constraints involved in this
situation. It shows a feasible region bounded by five constraints (numbered 1
through 5). The current solution is on the boundary defined by constraint 1
and the descent direction points into the feasible region as shown in the figure.
The nonbinding constraints are 2 through 5 but constraints 2 and 5 need not
be considered since in the given search direction they will not be violated.
(These are constraints for which Y ; h;df > 0.) The move size is determined by
checking which of the remaining constraints (3 or 4) will be violated first. In
this case, it is constraint 4 that sets the limit, ai** for the line search that
follows.

_ Finding a feasible descent direction. Consider now the problem
of determining a feasible descent direction. At some iterations this may not be
a problem since a search direction identified by the algorithm used (which may

Feasible
Region

Search
Direction

Figure 46 Maintaining feasibility along
a search direction by bracketing the range
of the line search.
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be steepest descent, Newton, quasi-Newton, or any other method) may be
feasible. In other cases, however, where the current solution is on the bound-
ary of the feasible region, the best descent direction may be pointing outside
that region. In such cases the direction has to be modified and the best (in
some sense) feasible descent direction should be used to continue the search.

In looking for a feasible direction of descent from x", only the binding
constraints need be considered. Those constraints that are not currently bind-
ing would not be violated by a small (infinitesimal) move in any direction and
should not, therefore, be considered. Given a candidate descent direction d =
(..., d;, ...), the following must hold in order to ensure feasibility:

Y hyxi+AaY hyd;=b; Vje g" [4.17a]
where A« is a small move size. Since Y ; h;;x = b; for all j € #", expression
[4.17a] reduces to

Y hydi20  Vjeg" [4.17b]
Condition [4.17b] should be satisfied by any feasible direction.

The direction offering the steepest feasible descent can be found by solv-
ing the program

min Vz(x") - 47 [4.18a]

subject to
Y hi;di =0 Vjie #" [4.18b]
Ydi=1 [4.18¢]

The objective function [4.18a] is the cosine of the angle between the
gradient and the descent direction.t This program then finds the descent direc-
tion that is closest to the opposite gradient direction (the cosine is minimized
for an angle of 180°) yet satisfies the feasibility requirements. The last con-
straint normalizes the descent direction vector in order to ensure a unique
solution. It is, unfortunately, a nonlinear constraint, meaning that program
[4.18] may be difficult to solve.}

The solution of this program is the steepest feasible descent vector. This
vector defines the direction in which the search for the next solution, x**?,
should be conducted. (As explained above, this search may have to be brack-
eted first to ensure the feasibility of x"*1))

The literature includes many other algorithms for determining a “good”

+Since d is constrained to be a unit vector, the objective function can be interpreted as the
slope of z(x) at x", in the direction d.

1The references mentioned in Section 4.5 include some descriptions of approximate meth-
ods to determine the best feasible direction. For example, one method approximates constraint
[4.18¢] by the constraints —1 < d, < 1,V i, which is linear and therefore easier to deal with.
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feasible descent method. As an example of such methods, consider the gradient
projection method, which obtains the next solution by “sliding” along the
binding constraints at the current point. This strategy is, of course, followed
only if the current descent direction (which is the direction opposite the gradi-
ent) points out of the feasible region (otherwise, there is no problem and the
algorithm proceeds along the opposite gradient direction). The sliding direc-
tion is identified by projecting the opposite gradient direction on the binding
constraints. The projection procedure itself includes some matrix manipu-
lations involving the binding constraints. The move size is optimized along the
descent direction, subject to the requirement that none of the (currently non-
binding) constraints is violated.

4.3 CONVEX COMBINATIONS METHOD

The convex combination algorithm was orginally suggested by Frank and
Wolfe in 1956 as a procedure for solving quadratic programming problems
with linear constraints and is known also as the Frank—Wolfe (FW) method.
The method is especially useful for determining the equilibrium flows for
transportation networks, which is why it is emphasized in this chapter.

Algorithm

The convex combinations algorithm is a feasible direction method.
Unlike the general procedure for feasible direction methods described in the
preceding section, the bounding of the move size does not require a separate
step (such as Eq. [4.15]) with this algorithm. The bounding is accomplished as
an integral part of the choice of descent direction. The direction-finding step of
the convex combinations algorithm is explained in this section from two
angles. First, this step is explained by using the logic of the general procedure
for feasible direction methods outlined in the preceding section, and second,
this step is presented as a linear approximation method.

To look at the direction-finding step of the convex combination algo-
rithm as that of a feasible direction method, consider the convex program

min z(x) [4.19a]
subject to
Y hijx; = b; Vije # [4.19b]

Assume now that at the nth iteration, the current solution is x*. Most feasible
direction methods use information about the shape of the objective function in
the vicinity of x" to determine the descent direction. Consequently, the descent
direction is based on the opposite gradient direction or the direction of the
(locally) steepest feasible descent.
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The convex combinations method selects the (feasible) descent direction
not only on the basis of how steep each candidate direction is in the vicinity of
x", but also according to how far it is possible to move along this direction. If,
for example, only a small move is feasible in a certain direction, effort might be
wasted in actually performing an iteration based on such a move. Even though
the direction may be associated with a steep local decrease in z(x), the overall
reduction in the objective function from z(x") to z(x"*') may not be significant.
On the other hand, a direction of change in which the local rate of improve-
ment is modest but where the feasible region allows a considerable movement
may achieve a larger reduction. The criterion for choosing directions in the
convex combinations method is therefore based on the product of the rate of
descent in the vicinity of x" in a given direction and the length of the feasible
region in that direction. This product, known as the “drop,” is an upper bound
to the possible reduction in the objective function value which can be achieved
by moving in this direction. The algorithm uses the direction that maximizes
the drop.

To find a descent direction, the algorithm looks at the entire feasible
region for an auxiliary feasible solution, y* = (3, ..., ... y}), such that the
direction from x" to y” provides the maximum drop. The direction from x" to
any feasible solution, y, is the vector (y — x") [or the unit vector (y — x")/||y
— x"||].1 The slope of z(x") in the direction of (y — x") is given by the projec-
tion of the opposite gradient [ — Vz(x")] in this direction, that is,

o —x)"

lly —x*|l

The drop in the objective function in the direction (y — x") is obtained by

multiplying this slope by the distance from x" to y, ||y — x"||. The result is
—Vz(x") - (y — x)7

This expression has to be maximized (in y) subject to the feasibility of y.
Alternatively, the expression can be multiplied by (—1) and minimized, re-
sulting in the program

—Vz(x") -

min Vz(x?) - (y — 97 = ¥ 525 5, xp [4.20a]
subject to
Yhyyizb Vjes [4.20b]

where the constraints [4.20b] are equivalent to the original constraint set
[4.19b] expressed in y. The solution of program [4.20] is y" and the descent
direction is the vector pointing from x" to y", that is, d”" = (y" — x"), or in
expanded form, d} = y} — x},V i.

+The notation || v | means the norm (or length) of the vector v, that is, \/v.v = /S (V2.
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Finding the descent direction, then, involves a minimization of a linear
program, which is given in Egs. [4.20]. As mentioned in the beginning of this
section, this algorithmic step can also be motivated by looking at the convex
combination method as a linear approximation method. This approach is
based on finding a descent direction by minimizing a linear approximation to
the function (instead of the function itself) at the current solution point. Mini-
mizing this linearized function subject to a linear constraint set is a linear
programming problem which has its solution at a corner of the feasible region
(see Section 2.3). The line connecting the current solution points, x", with the
solution of the linearized problem (denoted y”") is the direction of search. This
approach results in the same program as Eqs. [4.20]. To see this, let zi(y)
denote the linear approximation of the value of the objective function at some
point y, based on its value at x". This approximation is given by

Zl(y) = z(x") + Vz(x") - (y — x")7 [4.21]

This linear function of y has to be minimized subject to the constraints of the
original problem, that is,

min z}(y) = z(x") + Vz(x") - (y — x")7 [4.22a]
subject to

Yhyyizb, Vijes [4.22b]

Note that, at the point x = x”, the value of the objective function is constant
and thus z(x") can be dropped from Eq. [4.22a]. The problem that remains is
that of minimizing Vz(x") - (y — x") subject to constraints [4.22b]. This pro-
gram is identical to program [4.20], and its solution (again) can be used to
construct a direction for the convex combinations algorithm. Thus both points
of view can be used to motivate the algorithmic step of the convex combi-
nations method.

The objective function of the linearized problem, can, however, be sim-
plified even further by noting that Vz(x") is constant at x" and the term
Vz(x") - (x")T can therefore be dropped from the linearized program (see Eq.
[4.20a]), which can then be written as

. 0z(x"
min z(y) = Vz(x") - y7 = Z (—z(xi))y,- [4.23a]
subject to
Y by = b; Vie f [4.23b]
The variables of this linear program are y,, y,, ..., y; and the objective

function coefficients are 0z(x")/0x,, 0z(x")/0x,, ..., 0z(x")/0x;. These coef-
ficients are the derivatives of the original objective function at x", which are
known at this point. The solution of program [4.23], y" = (b}, V3, ..., V}), is
used to define the descent direction (ie., d* = y” — x”), as explained above.
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Once the descent direction is known, the other algorithmic steps involve the
determination of the move size and a convergence test.

As in many other descent methods, the move size in the direction of d”
equals the distance to the point along d" which minimizes z(x). As mentioned
before, the convex combinations methods does not require a special step to
bracket the search for an optimal move size (such as Eq. [4.15]) in order to
maintain feasibility. The new solution, x"*!, must liec between x" and y” (since
y", being a solution of a linear program, naturally lies at the boundary of the
feasible region). In other words, the search for a descent direction automati-
cally generates a bound for the line search by accounting for all the constraints
(not only the binding ones) when the descent direction is determined. Since the
search interval is bracketed, then, any one of the interval reduction methods
would be suitable for the minimization of z(x) along d" = (y” — x"), that is, for
solving

min z[x" + «(y" — x")] [4.24a]
subject to
0<acx<l [4.24b]

Once the optimal solution of this line search, «,, is found, the next point can
be generated with the usual step,

X"t =x" 4+ a,(y" — x") [4.25]
Note that Eq. [4.25] can be written as x" = (1 — a,)X" + o, y". The new solu-
tion is thus a convex combination (or weighted average) of x"and y".

The convergence criterion used in conjunction with the convex combi-
nations algorithm can be any one of the criteria commonly used for feasible
descent methods. Thus the convergence criterion can be based on the simi-
larity of two successive solutions or the reduction of the objective function
values between successive iterations.

Two general comments are in order here. First, as explained above, the
convex combinations algorithm involves a minimization of a linear program
as part of the direction-finding step. The convex combinations algorithm, then,
is useful only in cases in which this linear program can be solved relatively
easily. It is also useful when algorithms which are generally more efficient than
the convex combination method (e.g., Newton and quasi-Newton methods)
cannot be utilized due to the size of the problem. Many of the minimization
problems described in this book possess both properties: they include a large
number of variables, yet the linear program associated with the direction
finding step can be solved with particular ease. The reason is that this pro-
gram, in the cases dealt with in this text, has a special structure to it—that of a
network—which can be exploited to facilitate the solution of the linear pro-
gram.

The second comment concerns an interesting characteristic of the convex
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Figure 4.7 The bounds generated by a linear approximation to a function z(x) at a
point x".

combinations algorithm. In this method, the value of the linearized objective
function at its solution, z}(y"), is a lower bound to the optimal value of the
objective function itself, z(x*). To see this, recall that by convexity,

z(x*) > z(x") + Vz(x")- (x* — x")T = z}(x*) [4.26a]
However, y" minimizes z7(y) for any feasible y. Consequently,
ZH(x*) 2 ZJ(y") = z(x") + Vz(x")- (y" — x")T [4.26b]

Thus z7(y") is a lower bound for z(x*) at every iteration. Note that this lower
bound generated by the convex combinations method is a straightforward
extension of the lower bound mentioned in Section 4.1 for interval reduction
methods. Figure 4.7 illustrates the relationships in Eqs. [4.26] for a one-
dimensional convex function, z(x). Note also that this lower bound is not
monotonically increasing from iteration to iteration and therefore cannot be

used in a straightforward fashion to create a convergence criterion (see Prob-
lem 4.21).

Given a current feasible solution, x", the nth iteration of the convex
combinations algorithm can be summarized as follows:

Step 1: Direction finding. Find y” that solves the linear program [4.23].
Step 2: Step-size determination. Find a, that solves

min z[x" + oy” — x")]

0<a<1
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Step 3: Move. Setx"*! =x" 4+ a,(y" — x").
Step 4: Convergence test. If z(x") — z(x"*1!) < k, stop.t Otherwise, let
n:=n+ 1 and go to step 1.

Starting with a feasible solution, x°, the algorithm will converge after a finite
number of iterations.

Example

Consider the following mathematical program:
min z(x) = x + 2x3 — 2x,x, — 10x,
subject to
0<x,<4
0<x,<6

Application of the convex combinations method to this program can be facili-
tated by some preliminary calculations. The gradient of z(x) at x" is given by

Vz(x,, x3) = [(2x] — 2x3), (4x5 — 2x] — 10)]
The linear program at the nth iteration is thus
min z"(y) = (2x} — 2x3)y; + (4x5 — 2x} — 10)y,
subject to
0<y <4

0<y,<6

Since this problem is small, the optimal move size can be determined analyti-
cally by setting

dz[x" + a(y" — x")] _

0
do

Given X" and y", the optimal move size is, as the reader can verify,

_ 04 — XDt — x3) + (05 — x3)2x5 — x] — 5)
2001 — XS — X3) — 2y — x5 — 0] — x])?
This concludes the preliminary calculations and the algorithm can now be
executed. The convergence criterion is set, for example, at 0.1, terminating the
procedure when z(x") — z(x"*!) < 0.1. The algorithmic steps are depicted in
Figure 4.8 in relation to the feasible region and the objective function. These
steps are explained below.

+Other convergence criteria could also be used.
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Figure 48 Convergence pattern of the convex combinations algorithm for a qua-
dratic function with linear constraints.

Starting with the feasible solution x' = (0, 0) and z(0, 0) = 0, the first
iteration goes as follows:

First iteration:

Step 1: The gradient is Vz(0, 0) = (0, —10). The linear program is
min Vz(x')-y = —10y,
subject to
0<y, <4
0<y,<6

Solution (by inspection of Figure 4.8): y* = (0, 6) or y! = (4, 6). Choose
y' =4,6).

Step 2:

_ (4—00—0)+(6—0§2:0—0—5)
M T2 —0X6—0)— 26— 07 —(4—0)

= 0.750
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Step 3:

x2 =0+ 0.750(4 — 0) = 3
x2 =0+ 0.750(6 — 0) = 4.5

Step 4:

2x!) — 2(x%) = 0 — (—22.5) = 22.5

Second iteration:

Step 1: Vz(3, 4.5) = (— 3.0, 2.0).

23, 4.5 = —22.5

Part Il

The linear program is

min Vz(x%)-y = —3y, + 2y,

subject to

0<y <4

Solution (by inspection): y? = (4, 0).

Step 2: «, = 0.119.
Step 3:

x} =30+ 0.119(4.0 — 3.0) = 3.119
x3 =4.5 + 0.119(0.0 — 4.5) = 3.966

Step 4:

2(3.119, 3.966) = —23.213

2(x?) — z(x3) = 0.713

User Equilibrium

Obviously, the convergence criterion is not met and the algorithm con-
tinues. Table 4.2 shows the sequence of iterations of the convex combinations
algorithm for this example. As evident in the table, the convergence criterion is

TABLE 4.2 Iterations of the Convex Combinations Algorithm (see Figure 4.8)

n VZ(X") yn zill‘(yn) a, x"* 1 z(xn+ l) Z(X") — Z(xn+ 1)
0 (0.000, 0.000)

1 (0.000, —10.000) (4,6) —60.000 0750 (3.000, 4.500) —22.500 22.500

2 (=3000, 2000) (4,00 —35213 0.119 (3.119, 3969) —23213 0.713

3 (—1693, —0376) (4,6) —24211 0206 (3.301,4.385) —23.446 0.233

4 (—2169, 0939) (4,00 —29257 0063 (3.344,4.111) —23.622 0.176

5 (—1833, —0295) (4,6) —25.196 0.144 (3.439,64.383) —23.728 0.106

6 (—1.889, 0656 (4,00 —27.752 0.045 (3.464,4.186) -23.816 0.089




Chap. 4 Review of Some Optimization Algorithms 107

z(x7)

-22.0
-22.4
-22.8
-23.2

-23.6 1

-24.0+
— N

1 2 3 4 5 -]

(iteration number)

Figure 49 The asymptotic reduction in the objective function value as the iter-
ations of the convex combinations algorithm proceed.

met after six iterations and the algorithm terminates. Note that, as mentioned
before, the lower bound generated at each step, z7(y"), is not monotonically
increasing.

Figure 4.8 depicts the pattern of convergence toward the minimum. This
convergence pattern is demonstrated in Figure 4.9 in terms of the reduction in
the value of the objective function from iteration to iteration. The asymptotic
pattern shown in this figure is typical of the convex combinations algorithm.
The marginal contribution of each successive iteration becomes smaller and
smaller as the algorithm proceeds (this property was the basis for the conver-
gence criterion used in the example).

4.4 SUMMARY

This chapter reviews numerical minimization methods. It begins with a study
of line search algorithms, that is, methods for minimizing a function of a single
argument. The presentation covers two groups of methods: interval reduction
algorithms and quadratic fit approaches. Quadratic fit methods are usually
faster if the objective function is relatively smooth. Interval reduction methods
are naturally useful in minimizing a function over a given interval.

The review of minimization algorithms for multivariable programs deals
separately with unconstrained and constrained minimizations. Most of the
methods available for minimizing an unconstrained function of several vari-
ables are based on choosing a descent direction at a current solution and
moving along this direction to the next solution point. The steepest descent
method uses the opposite gradient as the descent direction and then chooses
the next solution at the point that minimizes the objective function along this
direction. This method often requires a large number of iterations to converge
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due to its “zigzagging” tendency. Many of the algorithms that require smaller
number of iterations cannot be used for the problems covered in this book
since they require computation of the Hessian (or an approximation of it).
Such requirements are computationally prohibitive for large problems of the
type encountered in traffic assignment analyses.

When minimizing constrained functions, the choice of descent direction
and move size cannot be governed by considering only the objective function,
since feasibility has to be maintained. The descent vector has to point in a
direction that includes at least some feasible points. Similarly, the move size
has to be constrained so that the next point is within the feasible region.

The last section of this chapter describes the convex combinations algo-
rithm. This algorithm is a feasible descent method that is based on a linear
approximation of the objective function at every iteration. Consequently, a
linear program has to be solved at every iteration in order to determine the
descent direction. The move size is determined by minimizing the objective
function along the descent direction. This algorithm is efficient when the linear
program can be solved easily.

Convergence of any of the algorithms described in this chapter can be
measured by the similarity of successive solutions or by the rate of reduction
in the objective function from one iteration to the next.

4.5 ANNOTATED REFERENCES

Much of the material covered in this chapter can be found in the references
mentioned at the end of Chapter 2. In particular, the reader who is interested
in convergence proofs should consult the texts of Zangwill (1969) and Luen-
berger (1973). The former includes many original contributions, and the latter
summarizes the global convergence conditions for the various algorithms men-
tioned in this text. Good descriptions of feasible direction methods can be
found in Simmons (1975) (including several methods for expediting conver-
gence of steepest descent algorithms by modifying the search direction every
few steps) and Wagner (1975). More detailed descriptions of the Fibonacci
method can be found in the texts of Wilde (1964) and Wismer and Chattergy
(1978). The convex combinations method first appeared in the literature in the
paper by Frank and Wolfe (1956). A general proof of convergence for this
method is offered by Zangwill in the aforementioned text.

4.6 PROBLEMS

4.1. Derive formula [4.1] for interval reduction methods.

4.2. Show that if an interval reduction method with a constant reduction ratio has to
satisfy Eq. [4.2], then the reduction ratio is the golden section. Show also that
r= %(\/gq—- 1) leads to Eq. [4.2].
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43.

44.

4.5.

4.6.

4.7.

Use the golden section method to find the minimum of the function z(x) = 3x?
— 4x + 1 within x* + 0.1 in the interval [0, 2]. How many function evaluations
are needed? How many function evaluations would be needed to find the solu-
tion within x* + 0.001?

Use the golden section to find, within +0.15 of the optimum, the value of x that
minimizes the function

2(x) = max {(2 - g) x — 3, ;}

such that 0 < x < 8.

Using a mathematical programming text, describe the Fibonacci search algo-
rithm. Compare its mechanism and its efficiency to that of the golden section
method and the bisection method.

Use the bisection method to find the minimum of z(x) = 3x2 — 4x + 1 over the
interval [0, 2]. Determine the optimal value of x within 5% of the initial inter-
val. How many function evaluations are needed to get within x* + 0.001?

Find the minimum of z(x) = 2x> + 3x?> — 12x + § in the interval [0, 4] using:
(a) Newton’s method (use x° = 0).

(b) The false position method (use x° = 0, x! = 0.5).

(¢) The quadratic fit method (use x, = 0, x, = 0.5, x5 = 1).

*4.8. (a) Show why the curve-fitting algorithms described in the text are not truly

4.9.

4.10.

4.11.

4.12.

*4.13.
4.14.

4.15.

*4.16.

descent methods. How can the quadratic fit method be modified to be a
descent method.

(b) Show why Newton’s method for minimizing multivariate functions (Eq.
[4.12]) is not a descent method and how should it be modified to be a
descent method.

Develop the algorithmic iteration for the quadratic fit method (i.e., derive formu-
la [4.6]).

Write a computer subroutine that accepts a function, an interval, and a conver-
gence criterion and performs a golden section search.

Write a computer subroutine that executes a line search using the bisection
method.

Suggest a procedure for amending an interval reduction method so that it can be
'used for the line search phase when minimizing an unconstrained function.

Prove that the steepest descent algorithm is a descent method.
Using the steepest descent method, find the minimum of the quadratic function

2(x5, X3) = (x; — 2)* + 4(x, — 3)?
Starting from x° = (0, 0) plot the algorithmic moves and verify the zigzag prop-
erty of the algorithm.
Perform four iterations of the steepest descent method to solve
min z(x) = x? + 2x% + x2 — 2x; — 3x, — 2x,
Start at the point x = (0, 0, 0).
Find an approximate analytical expression for the optimal step size along the

negative gradient direction for convex functions. [Hint: Use a second-order
expansion of z(x) about z(x").]
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4.17.

4.18.
4.19.

4.20.

4.21.
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Consider the mechanics of feasible descent algorithms.

(a) Why do only the nonbinding constraints need be considered in maintaining
feasibility along the (feasible) descent direction?

(b) Why do only the binding constraints need be considered in finding the best
feasible descent direction?

Show that if z(x) is a convex function of x, z2(x” + ad”) is a convex function of .

Show that the direction used by the convex combinations method is always a
descent direction.

Use the convex combinations algorithm to solve the program:
min f(x,, x;) = 4(x, — 10)? + (x, — 4)?
subject to
X, —x, <10
tx,—x,23
x, >0

Use a plot of the feasible region to solve the linearized problem by inspection.
Plot the algorithmic steps in this space.

The convex combinations algorithm generates a lower bound to the objective
function at every iteration. Use this bound to develop a convergence criterion
for this algorithm.



Solving
for User Equilibrium

The problem of finding the user equilibrium over a transportation network
was introduced in Chapter 1. It involves the assignment of O-D flows to the
network links so that travel time on all used paths for any O-D pair equals
the minimum travel time between the origin and destination. This problem
was formulated as a mathematical program (the equivalent UE minimization)
in Chapter 3. Chapter 4 reviewed a general class of algorithms for solving
mathematical programs and focused on the convex combinations method.
This chapter describes the application of this method to the solution of the
user-equilibrium minimization program.

Before this application of the algorithm is explained, however, two of the
most common heuristic methods for finding the user-equilibrium flow pattern
are outlined in Section 5.1. These approaches had been extensively used before
solution algorithms for the UE program were developed and are still widely
applied today. Section 5.2 then demonstrates how the convex combinations
algorithm can be applied to the equivalent user-equilibrium program. The last
section of this chapter concentrates on an algorithm for finding the minimum-
travel-time path between two network nodes. The determination of minimum
paths is a major component of the algorithmic solution of the UE program
(and of the heuristic algorithms mentioned in Section 5.1).

5.1 HEURISTIC EQUILIBRATION TECHNIQUES

The heuristic approaches to the user-equilibrium problem reviewed in this
section include capacity restraint methods and incremental assignment tech-
niques. At the core of these methods lies the network loading mechanism.

111
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Network loading is the process of assigning the O-D entries to the network
for specific (constant) link travel times. The process follows the route-choice
criterion, which underlies any traffic assignment model. As argued in Chapter
1, the UE flow pattern is the result of each motorist using the minimum travel
time path between his origin and his destination. Accordingly, the network
loading mechanism used in all the algorithms designed to solve the UE prob-
lem assigns each O-D flow to the shortest travel time path connecting this
O-D pair. As mentioned in Chapter 3 (see discussion following Eqs. [3.28]),
this procedure is known as the “all-or-nothing” assignment.

In the all-or-nothing procedure, each O-D pair r—s is examined in turn
and the O-D flow, q,,, is assigned to every link that is on the minimum-travel-
time path connecting origin r to destination s. All other paths connecting this
O-D pair are not assigned any flow. During this process, the link travel times
are assumed to be fixed (i.e., not flow dependent) at some value. Accordingly, if
there is a performance curve, t,(x,), corresponding to each link in the network,
any mention of all-or-nothing assignment (or any other network loading
mechanism) should be made in conjunction with a specific travel time. For
example, the all-or-nothing assignment can be applied to an empty network,
that is, using the travel times t, = t,(0) for every link, a. The only compu-
tational difficulty with the all-or-nothing procedure involves the identification
of the minimum-travel-time paths connecting each O-D pair. This, however, is
a well-researched problem in graph theory and several algorithms for its solu-
tion are readily available. Section 5.3 describes one of the more efficient of
these procedures, one that is particularly applicable to transportation net-
works.

Many of the early urban transportation studies have used the all-or-
nothing procedure (based on empty network times) as the traffic assignment
procedure. This assignment method does not recognize, of course, the depen-
dence between flows and travel time, thus, in effect, it ignores the equilibrium
problem altogether.

Capacity Restraint

In an attempt to capture the equilibrium nature of the traffic assignment
problem, transportation planners have devised an iterative scheme known as
capacity restraint. This method involves a repetitive all-or-nothing assignment
in which the travel times resulting from the previous assignment are used in
the current iteration. The algorithm can be summarized as follows:

Step 0: Initialization. Perform all-or-nothing assignment based on
t9 = 1,(0), V a. Obtain a set of link flows {x2}. Set iteration counter n:= 1.
Step 1: Update. Settt =t (x"" '),V a.

Step 2: Network loading. Assign all trips to the network using all-or-
nothing based on travel times {¢}. This yields a set of link flows {x}}.
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TABLE 5.1 Capacity Restraint Algorithm Applied to the Network

in Figure 5.1
Link
Iteration Algorithmic

Number Step 1 2 3
0 Initialization 0= 10 0= 20 =25
xX=10 xI= 0 xJ=0
1 Update =947 =2 11=25
Loading xi= 0 x}j=10 x}=0
2 Update 2= 10 2 =137 13=25
Loading x2=1 x(= 0 x2=0
3 Update =947 3= 2 £3=25
Loading x3= 0 x3=10 x}=0

Step 3: Convergence test. If max, {|x% — x|} < x,} stop (the current
set of link flows is the solution). Otherwise, set n:=n + 1 and go to step 1.

Table 5.1 demonstrates an application of this procedure to the example
network depicted in Figure 5.1, shown on page 114. Starting with travel times
corresponding to an empty network, the initial solution is determined and the
iterations follow the above-mentioned algorithm. Note that the algorithm does
not converge, as the flow “flip-flops” between links 1 and 2, whereas link 3
does not get loaded at all.

To remedy this situation, the algorithm can be modified as follows. First,
instead of using the travel time obtained in the previous iteration for the new
loading, a combination of the last two travel times obtained is used. This
introduces a “smoothing” effect. Second, the failure to converge is recognized
explicitly and the algorithm is terminated after a given number of iterations,
N. The equilibrium flow pattern is then taken to be the average flow for each
link over the last four iterations (obviously, N should never be less than 4).
This form of the algorithm was adopted by the U.S. Federal Highway Admin-
istration (FHWA) as part of its transportation planning package. The steps of
the modified capacity restraint algorithm (using weights of 0.75 and 0.25 for
the averaging process) are as follows:

Step 0: Initialization. Perform an all-or-nothing assignment based on
tQ = 1,(0). Obtain {x2}. Set n:= 1.

Step 1: Update. Set 1=t (x"" '),V a.

Step 2: Smoothing. Set % = 0.75t" ! + 0.257%, V a.

+This convergence test is based on the maximum change in link flow between successive
iterations. Other criteria can also be used.
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Link 1

ty= 10014015 ()1 time units
t2= 2001+015 (Z2]*1 time units

ty= 25014015 (31 time units

Figure 5.1 Network example, with three
X+ Xy + X3 = 10 flow units links and one O-D pair.

Step 3: Network loading. Perform all-or-nothing assignment based on
travel times {¢2}. This yields {x}}.

Step 4: Stopping rule. If n = N, go to step 5. Otherwise, set n:=n + 1
and go to step 1.

Step 5: Averaging. Set x¥* =% Y7, x27' V¥ a and stop. ({x}} are the
link flows at equilibrium.)

The smoothing is accomplished by creating a temporary link-travel-time
variable, 15, which is not used as the travel time for the next iteration (see step
1). Instead, it is averaged together with the travel time used in the last iter-
ation, "~ !, to obtain the link travel time for the current iteration, t*. This is
done in step 2. This algorithm differs from the original capacity restraint
algorithm in the addition of the smoothing step and the averaging step. Note
that step 4 is called a stopping rule rather than a convergence test, since there
is no reason to expect this algorithm to converge to the equilibrium solution,
in spite of these changes.

An application of this algorithm to the network example of Figure 5.1 is
demonstrated in Table 5.2. Note that it produces a solution that is not an
equilibrium flow pattern since, even though all paths are used, ¢ is substan-
tially different from t% and t%. The table shows three iterations in addition to
the initialization, meaning that four minimum-path computations are repre-
sented. For large networks, this is the main computational burden, and thus
traffic assignment algorithms should be compared in terms of efficiency for a
given number of minimum-path computations (i.e., a given number of all-or-
nothing assignments).
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TABLE 5.2 Modified Restraint Algorithm Applied to the Network in Figure 5.1

Link
Iteration Algorithmic
Number Step 1 2 3
0 Initialization 9= 10 3= 20 t]= 25
x?= 10 x3= 0 x3= 0
1 Update 11 =947 3= 20 = 25
Smoothing 1 =244 =20 = 25
Loading xi= 0 xi= 10 xi= 0
2 Update 2= 10 12 =137 2= 25
Smoothing 2 =186 =49 2= 25
Loading x2= 0 x3= 0 x2= 10
3 Update 3= 10 3= 20 73 =488
Smoothing =142 5= 42 =141
Loading x3= 0 x3= 10 $= 0
Average xf= 25 x3= 50 x¥= 25
tt= 137 t3= 273 3= 268

Incremental Assignment

Another heuristic method for attaining the user-equilibrium solution as-
signs a portion of the origin—destination matrix at each iteration. The travel
times are then updated and an additional portion of the O-D matrix is loaded
onto the network. In this manner, the general shape of the link performance
functions can be “traced” with the successive assignments. This procedure,
which is known as incremental assignment, is outlined below. (In this descrip-
tion, w? denotes the flow on link a resulting from the assignment of the nth
increment of the O~D matrix onto the network.)

Step 0: Preliminaries. Divide each origin—destination entry into N
equal portions (i.e. set g% = g,,/N). Set n:=1and x2 =0, V a.
Step 1: Update. Set ! =t (x"" 1),V a.

Step 2: Incremental loading. Perform all-or-nothing assignment based
on {t3}, but using only the trip rates q", for each O-D pair. This yields a flow
pattern {w"}. '

Step 3: Flow summation. Setx"=x'"! 4w, Va.
Step 4: Stopping rule. If n = N, stop (the current set of link flows is the
solution); otherwise, set n:=n + 1 and go to step 1.

In some versions of this algorithm, the incremental all-or-nothing procedure in
step 2 is modified and origin—destination pairs are selected in random order,
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TABLE 5.3 Incremental Assignment Algorithm Applied to the Network
in Figure 5.1

Link
Iteration Algorithmic
(Increment) Step 1 2 3

1 Update t1=10 ty =20 ty=125
Incremental loading ~ wi= 25 wj= 0 wy= 0

Summation x;= 25 x;= 0 xy= 0

2 Update 2=14 2=20 2=25
Incremental loading ~ wi= 25 wi= 0 wi= 0

Summation x2 =50 xi=0 x2= 0

3 Update £ = 69 £ =20 =25
Incremental loading wi= 0 wi= 25 wi= 0

Summation x3= 50 x3= 25 x3=0

4 Update =69 15 =205 13=25
Incremental loading wi= 0 wi= 25 wi= 0

Summation xt= 50 x$= 50 x$=0

Travel time at convergence 1F =169 13 =213 13=25

with a flow summation phase (as in step 3) and travel-time update (as in step
4) following each partial assignment (i.e., after each O-D entry is loaded).

Table 5.3 demonstrates the application of this algorithm to the network
example of Figure 5.1. The flow pattern resulting from an incremental assign-
ment with four increments is x = (5, 5, 0). The last row in the table [t* = t,(x2)
for a =1, 2, 3] is provided so that the reader can judge the closeness of the
solution to an equilibrium flow pattern. As evident from this table the two
used paths (links 1 and 2) do not exhibit equal travel times. Furthermore, these
travel times are higher than that of the unused path (link 3).

In conclusion, it is clear that the heuristic methods reviewed in this
section either do not converge or produce a set of flows that is not in agree-
ment with the user-equilibrium criterion. It may be reasonable to believe,
though, that in general, as the number of increments grows, the incremental
assignment algorithm may generate a flow pattern closer to the user-equilibri-
um condition. A very large number of increments (associated with a consider-
able computational effort) may be required, however, and even then the
method will not always produce the user-equilibrium flow pattern.

5.2 APPLYING
THE CONVEX COMBINATIONS METHOD

As the examples of the preceding section demonstrate, the heuristic methods
discussed thus far may not converge to the equilibrium solution. It is this
failure to converge which motivates the overall approach taken in this book—
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formulating the user-equilibrium problem as a mathematical program and
solving this program. Chapter 3 dealt with the program formulation and
showed that the flow pattern which minimizes the UE equivalent program is,
in fact, a user-equilibrium solution. This program includes a convex (nonlin-
ear) objective function and a linear constraint set. Chapter 4 reviewed various
feasible direction methods for solving such programs, emphasizing the convex
combinations method. This method is especially suitable for solving the equiv-
alent UE program since the direction-finding step can be executed relatively
efficiently. This step involves the solution of a linear program, which, in the
case of the UE program, has a special structure that simplifies its solution.

Using the notation introduced in Chapter 3, the UE objective function is
given by

min z(x) = ¥ J t(0) do [5.1a]
a JO
subject to
YIe=4, Vrs [5.1b]
k
¢ =0 Vkrs [5.1c]

where x, is the flow on link g, f} is the flow on path k connecting origin r with

destination s, and the incidence relationships x, = Y, > f567,, V 4, hold.
Applying the convex combinations algorithm to the minimization of the

-UE program requires, at every iteration, a solution of the linear program (LP)

min ') = V2(x) - y7 = ¥ 280
a 6xa
over all feasible values of y =(..., y,,...) (see Eqgs. [4.23]). The gradient of
z(x) with respect to the link flows at the nth iteration is the link travel-time
vector, since 0z(x")/0x, = tJ (see Eq. [3.12a]). The LP objective function at the
nth iteration (given by Eq. [5.2]) thus becomes

[5.2]

min zZ"(y) =Y 2y, [5.3a]

subject to N
; G=ds Vrs [5.3b]
ge 20 Vkrs [5.3¢]

where y, =3, > 9507, V a, and % = t,(x"). In this linear program, y, is the
auxiliary variable representing the flow on link a, while g{* is the auxiliary flow
variable for path k connecting O-D pair r—s. This program calls for mini-
mizing the total travel time over a network with fixed (not flow-dependent)
travel times, ;. The total travel time spent in the network will be minimized
by assigning all motorists to the shortest travel-time path connecting their
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origin to their destination (see Section 3.5). Such an assignment is performed
by the all-or-nothing network loading procedure mentioned earlier. Conse-
quently, the program in Eqgs. [5.3] is known as the all-or-nothing program.
The core of the all-or-nothing procedure is the determination of the shortest
paths between all origins and all destinations. Section 5.3 outlines an efficient
method for finding these paths between all the network nodes. At this point, it
is sufficient to mention that program [5.3] can be solved efficiently.

To see that the solution of program [5.3] does not involve more than an
all-or-nothing assignment, the linearization step of the convex combinations
method can be derived by taking the gradient of objective function [5.1a] with
respect to path flows (instead of link flow, as in [5.2]). The linearized program
then becomes

min z(g) = V,z[x(f"] - g” Z Z g [5.4a]

subject to
% §k: w=qs Vrs [5.4b]
g =20 Vkors [5.4c]

where ¢} is the travel time on path k connecting r and s, at the nth iteration of
the algorithm. This program can be decomposed by O-D pair since the path
travel times are fixed. The resulting subproblem for pair r-s is given by

min z(g"™) = Z g [5.5a]

subject to
; 9 = drs [5.5b]
g =0 vk [5.5¢]

This program is obviously minimized by finding the path, m, with the smallest
travel time among all paths connecting r and s, and assigning all the flow to it.
In other words,

g = q,, ifen<c® Vk [5.6a]
and

=0 for all other paths [5.6b]

In case two or more paths are tied for the minimum, any one of them can be
chosen for flow assignment.

Once the path flows {g;*'} are found, the link flows can be calculated by
using the incidence relationships, that is,

Z Z grs" 6rs V a



Chap. 5 Solving for User Equilibrium 119
This solution defines the descent direction d” = y" — x".

The remaining algorithmic steps of the convex combinations method are
similar to those outlined in Section 4.3. The initial solution can be usually
determined by applying an all-or-nothing network loading procedure to an
empty network, in a way similar to the initialization of the capacity restraint
methods discussed in Section 5.1.

The line search for the optimal move size can be performed with any of
the interval reduction methods, but the bisection method (Bolzano search)
may be particularly applicable. The reason is that the derivative of the objec-
tive function z[X" + a(y" — x")] with respect to « is given by

2 Ax b oty XN =5 05— DG+ a0l -] [57)

which can be easily calculated for any value of «.

The stopping criterion for solving the UE program could be based on
the values of the objective function. As mentioned in Section 3.1, however, this
function is merely a mathematical construct that lacks behavioral or economic
meaning. Consequently, the convergence criterion should be based on the
relevant figures of merit, which in this case consist of the flows and the travel
times. A possible measure of the closeness of a particular solution to equilibri-
um is the similarity of successive O-D travel times. Letting u}, denote the
minimum path travel time between O-D pair r—s at the nth iteration, the
algorithm can terminate if, for example,

n—1

uy, — u
) I—————— <K [5.8a]
U
rs rs

Alternatively, a criterion that is based on the change in flows can be used. For
example, the zlgorithm can terminate if

VOt — xn?
a <« [5.8b]

2 x;
a

Other convergence criteria can be used as well. The algorithm itself, when
applied to the solution of the UE problem, can be summarized as follows:

Step 0: Initialization. Perform all-or-nothing assignment based on
t, = t0), V a. This yields {x;}. Set counter n:= 1.

Step 1: Update. Set 1% = t,(x"), V a.

Step 2: Direction finding. Perform all-or-nothing assignment based on
{t3}. This yields a set of (auxiliary) flows {y%}.

Step 3: Line search. Find a, that solves

X + vy — x7)
min Y t(w) dw

0<a<1l a JO
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Step 4: Move. Set x""! = x"+ o ()" — x7), V a.

Step 5: Convergence test. If a convergence criterion is met, stop (the
current solution, {x2*'}, is the set of equilibrium link flows); otherwise, set
n:==n + 1 and go to step 1.

Note the similarity between this algorithm and the capacity restraint
method reviewed in Section 5.1. In fact, if the move size, «,, is fixed at a, = 1
for all n, the resulting algorithm is identical to the capacity restraint method.
This observation is important because it means that existing computer pro-
grams that use the capacity restraint method can be easily modified to give a
convergent algorithmic solution to the UE problem (by inserting step 3).

To demonstrate the convergence of this algorithm to the equilibrium
solution, it is applied to the three-link network example depicted in Figure 5.1.
The iterations of this algorithm are shown in Table 5.4. The results in this
table should be compared to the convergence patterns of the heuristic methods
shown in Tables 5.1 to 5.3. From Table 5.4 it is evident that after five iter-
ations (six minimum-path calculations, including the initialization process) the
flows are close to equilibrium; the travel times on all three routes are very
similar.

A comparison of this algorithm with the previous (heuristic) methods, in

TABLE 54 Convex Combinations Algorithm Applied to the Network in Figure 5.1

Link
Iteration  Algorithmic Objective Step
Number Step 1 2 3 Function Size
0 Initialization 9= 100  3=200 =250
xl= 1000 xi= 000 xi= 000

1 Update t! =9470 ty =200 13 =250  z(x) = 1975.00
Direction yi= 0 y; =10 yi= 0 a, = 0.596
Move x2= 404 xZ= 596 xi= 000

2 Update 2= 350 13=350 (2=250 z(x)= 197.00
Direction yi= 10 yi= 0 yi= 0 a, = 0.161
Move x}= 339 x3= 500 x3= 161

3 Update 3= 223 13=273 t3=1353 z(x) = 189.98
Direction yi= 10 y3=0 y3= 0 o = 0.035
Move xt= 362 x3= 483 xi= 155

4 Update = 261 13=263 14=253 z(x)= 189.44
Direction yi= 0 y3= 0 y3=10 o = 0.020
Move x3= 354 x3= 473 x3= 172

5 Update = 248  5=258 13=254 z(x)= 189.33
Direction = 10 y3= 0 y3=0 o = 0.007
Move x¢= 359 x$= 470 x§= 171

189.33

Update 8= 256 15=257 1§=254 zx)
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terms of computational efficiency, can be made on the basis of the flow pattern
at the end of the third iteration (this is equivalent to four all-or-nothing
assignments in terms of computational effort). At this point, the travel times
generated by the convex combinations algorithm on the three paths are t* =
(26.1, 26.3, 25.3). This situation is much closer to equilibrium than the path
travel times generated by the modified capacity restraint method, t* = (13.7,
27.3, 26.8), or the ones produced by the incremental assignment method,
t* = (69.0, 27.3, 25.0).

As Table 5.4 shows, flow is taken away from congested paths and as-
signed to less congested paths, at each iteration of the convex combinations
method. This process equalizes the travel times among all paths and brings the
system toward equilibrium. The reduction in the objective function value illus-
trated in Table 5.4 follows the pattern demonstrated in Figure 4.9. Again, the
marginal contribution of each successive iteration to the reduction in the
objective function value is decreasing.

In solving the UE program over a large network, each iteration involves
a significant computational cost, due primarily to the effort required to calcu-
late the shortest paths in the direction-finding step. It is important, then, that a
good answer is achieved after a relatively small number of iterations.

In practice, this is not a major problem because of two reasons. First, the
convergence pattern of the convex combinations algorithm is such that the
first few iterations are the most “cost effective.” In other words, the flow
pattern after only a few iterations is not very far from equilibrium. Second, the
convergence criteria used in practice are not very stringent and thus conver-
gence can be achieved after only a small number of iterations. This is because
the accuracy of the input data does not warrant the effort needed to obtain an
extremely accurate equilibrium flow pattern.

The number of iterations required for convergence is significantly af-
fected by the congestion level on the network. In relatively uncongested net-
works, a single iteration may suffice since the link flows may be in the range
where the performance functions are almost flat. This means that the updated
travel times are very close to the initial ones, generating a set of link flows that
is quite similar to the initial solution. As congestion builds up, more iterations
are required to equilibrate the network. This effect is demonstrated in Figure
5.2, which depicts the convergence pattern of the convex combinations method
for a medium-sized network, for three congestion levels. The convergence
measure depicted in this figure is based on the objective function values. The
three curves in the figure correspond to low, medium, and high levels of
congestion over the network. As the figure shows, the congestion effect on the
convergence rate can be quite pronounced.

In actual applications, only four to six iterations are usually sufficient to
find the equilibrium flow pattern over large urban networks. This number
reflects common practice in terms of trade-offs among analytical accuracy,
data limitations, and budget, given typical congestion levels.
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CONVERGENCE MEASURE

- T -

ITERATIONS

Figure 5.2 Convergence rate of the convex combinations algorithm for various
congestion levels. Congestion is measured in terms of Y, x,t,(x)/Y, x,t,(0), where
x, and t, are the equilibrium flow and travel times. Convergence is measured by the
value of the objective function, normalized between the initial iteration and the 30th
one. At iteration n this measure is {1 — [2(x°) — z(x")]/[z(x®) — z(x>°)]}100.

5.3 SHORTEST PATHS OVER A NETWORK

As demonstrated in this chapter, both the optimization and heuristic ap-
proaches to the solution of the UE problem require an iterative all-or-nothing
assignment. This assignment includes loading the trips between each origin—
destination pair on to the shortest travel time path connecting this pair. The
problem is thus that of finding the minimum-travel-time paths connecting each
O-D pair for a given set of link travel times. The solution algorithm has to be
very efficient since, in the course of finding the user equilibrium, the minimum-
path problem has to be solved over and over again for each O-D pair at
different flow levels.

The notation used up to this point will be slightly modified for the
purposes of the discussion in this section. Computer memory, when storing a
network, does not keep separate lists of nodes and links, but rather a list of
nodes only. Links are identified by their end nodes. If i and j are nodes (i.e., i,
j € &), the link pointing from i to j is indexed by ij (i.c., ij € o). Accordingly,
x;; and t;; denote the flow and travel time, respectively, on link ij.

Shortest-Path Algorithm

The algorithm presented here is known in the operations research litera-
ture as the label-correcting method. It finds the shortest path from a given
origin (root) node to all other nodes in the network. Accordingly, it has to be
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used for each origin in turn for a complete all-or-nothing assignment to be
performed. The explanation that follows pertains to the calculation of such a
minimum-path tree, that is, the shortest path from one root node to all other
nodes.

The algorithm essentially scans the network nodes in an iterative
manner. At each iteration the algorithm tries to find a path from the root to
the node being scanned that is better (shorter) than the current path. The
algorithm terminates when no better path can be found from the root to any
of the other nodes in the network.

Assume that the network is stored in the computer as a list of links
identified by their end nodes. A travel time (or length) ¢;; is associated with
each link ij. In addition, two pieces of information are stored for every node i
in the network: 1) the (current) label of this node, I;, and 2) its (current)
predecessor node, p;. The label of node i is the distance from the root node to
node i along the (current) shortest path. The predecessor of node i is the node
just preceding node i along the (current) shortest path. A list of the predecessor
nodes (the p;’s) is continuously updated so that the minimum paths can be
traced once the algorithm is terminated. (These paths are traced backward
from every node to the root.) The algorithm requires an examination of all the
network nodes at least once. To help manage and keep track of the nodes, the
algorithm uses an additional list called the sequence list. This list includes all
the nodes that have yet to be examined as well as the nodes requiring further
examination.

The algorithm is initialized by setting all labels (which are arranged in a
label list) to infinity (or, in practice, to a very large number), setting all prede-
cessor nodes (in the predecessor list) to zero, and placing the origin node, 7, on
the sequence list with label /,:= 0.

Each iteration starts with the selection of a node (say, i) from the se-
quence list for examination. (At the first iteration, the root node is the only one
on the sequence list and therefore is examined first.) All nodes, j, that can be
reached from i by traversing only a single link are tested in the examination
process. If the minimum path to j through i is shorter than the previous path
to j, then [; is updated. In other words, if

L+t <l [59]

then the current shortest path from the root node to j can be improved by
going through node i. To reflect this change, the label list is updated by setting
l;»=1; + t;;, the predecessor list is updated by setting p;:=i, and the sequence
list is updated by adding j to it (since this change may affect nodes that can be
reached from j). Once all the nodes j (that can be reached from i) are tested, the
examination of node i is complete and it is deleted from the sequence list. The
algorithm terminates when the sequence list is empty. At this point, the short-
est path from the root to any other node can be found by tracing the prede-
cessor list back to the root node.

Note that the algorithm “fans out” from the root node. It first places all
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the nodes that can be reached from the origin by traversing only a single link
on the sequence list, and eliminates the origin itself from the list. The algo-
rithm then keeps adding nodes to the list if the label test is met and deleting
nodes already examined. Note that a node eliminated from the sequence list
can reappear on it in a later stage.

Example

Consider the simple network depicted in Figure 5.3. This network in-
cludes one O-D pair and four links. (The number shown next to each link
indicates the travel time associated with it.) The label-correcting algorithm is
used below to find the shortest path from node 1 to node 4.

tiy= 4

tip=1
12 t3e=

Figure 5.3 Network example for the
t=1 minimum-path algorithm.

First, all labels are initialized to oo and all predecessors to zero. Next,
the label of node 1 is changed to zero and it is placed on the sequence list. The
sequence list is then scanned and node 1 is chosen for examination (at this
point there are no other choices). Two nodes can be reached from node 1 (2 or
4); assume that 4 is considered first. Now, since I, + t;, =4 <[, = o0, the
label of node 4 is changed to 4 and this node is placed on the sequence list.
Node 1 is not yet erased from the list, since link 1— 2 must be considered
next. This is then followed by considering links 2— 3 and 3— 4. The contents
of the label list, the predecessor list, and the sequence list for these iterations
are given in Table 5.5. At the fourth iteration, the label of node 4 is changed
from 4 to 3. The fifth iteration only verifies that no link emanates from node 4.
This node is then removed from the sequence list and the algorithm terminates
(since the sequence list is empty). The minimum path can now be traced
backward from node 4 by using the predecessor list.

TABLE 5.5 Contents of the Label, Prediction, and Sequence Lists

Label List Predecessor List

Link Node Node Node Node Node Node Node Node Sequence

Iteration Tested 1 2 3 4 1 2 3 4 List
Initialization — 0 0 0 e} 0 0 0 0 1
1 1-4 0 o] 0 4 0 0 0 1 1,4
2 1-2 0 1 0 4 0 1 0 1 2,4
3 2—-3 0 1 2 4 0 1 2 1 3,4
4 34 0 1 2 3 0 1 2 3 4
S — 0 1 2 3 0 1 2 3
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Note on Computer Implementationt

The label-correcting algorithm discussed here can efficiently determine
the minimum-travel-time path from an origin node to all other nodes in a
network. The algorithm can be applied to very large networks, but care must
be taken in coding the algorithm. This section discusses some computer im-
plementation issues and gives some guidelines for efficient coding of the label-
correcting method.

The first issue of concern is the method of storing the network. In de-
scribing the algorithm, it was assumed that a list of the network links is
available. Consider, for example, the network depicted in Figure 5.4 on page
126. This network can be described by the list of its links identified by their
end nodes. For example:

“From” Node “To” Node

NN L= LR = WN -
VM ADNWUVAWVEAENNWN

In addition, each link is associated with some travel time, as shown in the
figure. At each iteration of the algorithm, all links emanating from a particular
node have to be tested. Thus, to avoid repeated searches of the link list, it is
advantageous to sort the links so that all links emanating from the same node
are stored adjacently: that is,

“From” Node “To” Node

WV A B WA NN e e
AN LA WANARN

1This section can be skipped without loss of continuity.
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“From” “To" Travel
Node Pointer Node Time
@ 1 —® 2
@ 4 @ 3
® 7 @ 6
® 8 1
® 9 ® 2
® 2
3
1
3
©® 5

Figure 54 Network example demonstrating a forward star network presentation. (The numbers
on the links show the links’ travel times.)

where “from” nodes are arranged in ascending order. To save space in com-
puter memory, this list can be stored in a “forward star” form, where each arc
is represented only by its ending node. A pointer is kept for each node,
indicating the position, in the link list, of links beginning with this node. The
right-hand side of Figure 5.4 demonstrates this pointer representation. For the
example under consideration, this pointer can be thought of as an array, B, of
length 5 with the following entries:

B(l) =1
BQ) = 4
B(3) =7
B(4) =8
B(S)=9

Instead of keeping two link-length arrays,f the network can thus be stored
with one link-length and one node-length array. Using this forward star form,
all the links emanating from each node can be processed easily.

The management of the sequence list is another area in which significant
computational gains can be made. First, note that all the nodes that represent
links emanating from a particular node under examination should be tested
consecutively. This keeps the sequence list small and avoids unnecessary
searches for the location of a particular link.

To avoid duplicating the computation, nodes should be added to the
sequence list only if they are not already on it. As it turns out, it is advanta-

tA link-length array includes as many components as the number of links in the network.
Similarly, a node-length array includes as many entries as there are nodes in the network.
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geous to process the sequence list (i.e., to choose candidate nodes for examin-
ation) in a particular order. In general, the sequence list is processed from the
top down, and nodes are added to the list by placing them at the bottom. (In
other words, the sequence is treated as a queue.) If, however, a node to be
added has already been on the list (and examined and removed from it), it
should be placed on the top (meaning that it would be examined next). This
strategy of managing the sequence list has been shown to be most effective for
computing shortest paths over transportation networks.

Figure 5.5 depicts a flowchart of the label-correcting algorithm which
utilizes the forward star form and uses the aforementioned strategy for manag-
ing the sequence list. Note that, in the computer, this list is not managed by
physically moving all nodes in order to place a node at the top of the list.
Instead, the sequence list is a node-length array, say s, containing the following
information regarding the status of each node in the sequence list:

(-1 if node i was previously on the list but

is no longer on it

if node i has never been on the list

s()=< +j if nodeiis on the list and j is the next
node on the list

+oo ifnode iis on the list and it is the last

. node on the list

In addition, the top and bottom of the list are identified by special pointers.
Placing a node, j, at the top of the list means only that s(j):= m if m was the
previous first node on the list, and the top pointer is changed to point at j.
Placing a node, j, at the bottom of the list is done by setting s(j) := oo, s(n) :=j
if n was the previous last node on the list, and the bottom pointer is changed
to point at j.

This concludes the description of the shortest path algorithm. The re-
mainder of this section discusses some related numerical issues regarding the
solution of user-equilibrium problems.

Transportation networks are characterized by a number of links/number
of nodes ratio of approximately 4. For such networks, the computational effort
associated with the identification of each minimum-path tree grows linearly
(on the average) with the size of the network analyzed. In other words, the
computer CPU timet needed is proportional to the number of nodes (and
links) in the network. This observation can be used to assess the compu-
tational effort associated with the solution of the UE program (using the
algorithm outlined in Section 5.2).

Finding the minimum paths is the most computation-intensive compo-
nent of each iteration of most UE solution procedures (and, in particular, the
convex combinations algorithm). The other components (loading the mini-

t+CPU (central processing unit) time is a measure of the effort required by the computer to
execute a program.
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Flowchart of the label-correcting shortest-path algorithm. (The set 2,

includes all nodes that can be reached from i by traversing a single link.)
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mum paths, the line search, the updates, and the convergence checks) do not
require more than a few percentages of the total CPU time. Consequently, the
computational effort associated with this application of the convex combi-
nations algorithm is proportional to the product of the number of iterations,
the number of originst (which determines the number of minimum-path trees
to be calculated at each iteration) and the number of nodes (which determines
the effort needed to calculate each tree). In other words,

computational) K number of\ /number of\ /number o [5.10]
costs B iterations origins nodes '
where K is a constant of proportionality that is computer specific.

5.4 SUMMARY

The focus of this chapter is on finding the user-equilibrium flow pattern over a
transportation network. The first section reviews the two most widely used
heuristic techniques for solving this network equilibrium problem. These in-
clude capacity restraint methods, which are not guaranteed to converge, and
incremental assignment methods, which may “converge” to a nonequilibrium
solution. The inadequate performance of these heuristics has motivated the
development of the equivalent minimization approach used in this text.

The convex combinations algorithm described in Section 4.3 can be
easily applied to the solution of the UE equivalent minimization program. The
solution of the linear program associated with each step of this algorithm
requires merely an all-or-nothing network loading. Such a loading involves the
assignment of all flow between each O-D pair to the minimum-travel-time
path connecting this O-D pair. The problem of finding the set of all relevant
minimum paths is a well-known problem in operations research for which
many efficient algorithms are available.

One of the most efficient algorithms for finding the minimum path from
a single node to all other network nodes is the label-correcting algorithm
described in Section 5.3. This algorithm is extremely efficient and its execution
can be expedited even further by careful coding and list-processing procedures.

The use of the convex combinations method in conjunction with the
label-correcting (or any other minimum-path) algorithm for the direction-
finding step provides an easy and efficient approach to the minimization of the
equivalent UE program. The convergence of the convex combinations method
is asymptotic in nature; the marginal contribution of each additional iteration

+If the number of destinations is smaller than the number of origins, the all-or-nothing
assignment can be carried out by rooting the minimum-path trees at the destinations. Each tree
would then give the minimum path from each of the network nodes to the destination root. The
total computational costs associated with solving the UE program are, then, proportional to the
product of the number of iterations, the number of nodes, and the minimum of the number of
origins and number of destinations.
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to the reduction in the value of the objective function is decreasing. The
number of iterations required for convergence is primarily a function of the
congestion over the network. The computational effort needed for each iter-
ation is proportional to the number of origins (or number of destinations, if it
is smaller) and the size of the network.

5.5 ANNOTATED REFERENCES

The two heuristic method presented in Section 5.1 are embedded in many of
the early transportation planning computer packages. The U.S. Federal High-
way Administration (FHWA) includes a modified capacity restraint method in
its Urban Transportation Planning Package (Federal Highway Adminis-
tration, 1977). The incremental assignment method was used in The DODO-
TRANS package developed at M.I.T. by Manheim and Ruiter (1970). Both
types of procedures were criticized by a number of researchers on the grounds
mentioned in this chapter. For example, Sheffi and Daganzo (1978) showed the
divergence property of the capacity restraint method for a contrived network,
while Ferland et al. (1975) demonstrated the problems associated with the use
of incremental assignment. The example used in Section 5.1 to demonstrate
both the problems associated with the use of heuristic methods and the con-
vergence of the convex combinations method follows the exposition by Eash et
al. (1979). Currently, the network assignment package UROAD, which is part
of the UMTA Transportation Planning System (UTPS) supported by the U.S.
Urban Mass Transportation Administration, includes the convex combi-
nations algorithm.

The application of Frank and Wolfe’s convex combinations method to
the solution of transportation network equilibrium was first suggested by
Bruynooghe et al. (1968) and applied by Murchland (1969). Shortly thereafter
it was used by LeBlanc et al. (1975), who coded and tested the algorithm for a
small city. At the same time, Nguyen (1974b) suggested the use of the convex
simplex method for solving the UE equivalent minimization program. Nguyen
(1974a) also suggested the use of the reduced gradient method and a modified
reduced gradient method for this purpose. In some side-by-side comparative
experiments, Florian and Nguyen (1976) found that even though the convex
simplex method converges somewhat faster than the convex combinations
method, it requires more computer memory. Consequently, the overall compu-
tational effort required by both methods is similar. The latter reference also
includes an interesting validation study, where the equilibrium flows were
found to be in satisfactory agreement with ground counts in the city of Win-
nipeg, Canada. Bovy and Jansen (1981) also demonstrate a high level of agree-
ment between ground counts taken in the city of Eindhoven, the Netherlands,
and the flows resulting from a user-equilibrium assignment. Figure 5.2 is taken
from Mimis (1984), who used a “hub and spokes” simulated network to study
some numerical issues in conjunction with equilibrium assignment algorithms.
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The minimum-path algorithm presented in Section 5.3 is the label-
correcting algorithm suggested by Moore (1957), with the modification for
handling the sequence list suggested by Pape (1974). The presentation of the
algorithm and the discussion of the computer implementation issues follow
Dial et al. (1977), who tested a number of the most widely used minimum-path
algorithms and concluded that the Moore—Pape algorithm is the most efficient
for transportation networks. This reference includes a discussion and detailed
presentations of many of these algorithms.

5.6 PROBLEMS

5.1. Show how the convex combinations algorithm can be used to solve the system
optimization assignment problem discussed in Section 3.4. Describe the algorithm
in detail. Should the objective function values be used as the basis for a conver-
gence criterion?

5.2. Find the user-equilibrium flow pattern over the network shown in Figure P5.1.
The O-D flows are:

1-2 2 flow units

32 2 flow units

and the volume—delay curves are t, = 1 + 0.15(x/a)*, where a is the link’s number
shown in the figure. Perform three iterations of the convex combinations method.

Figure PS.1

5.3. Streets and roadways cannot carry more than a certain amount of vehicular flow
known as “capacity.”

(a) Formulate the UE problem assuming that each network link is associated
with a capacity c,.

(b) Using the ideas outlined in the description of the feasible direction methods in
Section 4.2, devise a modification to the convex combinations method de-
scribed in Section 52 so that the algorithm would solve the capacity-
constrained UE problem. You can assume that an initial feasible solution is
given and that the performance curves are asymptotic to the capacity flow, for
example, t(x,) = 1/(c, — x,).T

(c) Devise a method for finding an initial feasible solution for your algorithm.

tMathematically, it is required that the performance curves would satisfy

lim j .t,,(w) do =

Xg=Cq JO

as shown by Daganzo (1977c).
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54.

5.5.

5.6

5.7

5.8

59.

5.10.

5.11.

Part Il User Equilibrium

Program [5.4] defines the linearization step of the convex combinations algo-
rithm in terms of path flows. Outline all the other algorithmic steps associated
with the application of this algorithm to the UE equivalent program, in terms of
path flows. Can the algorithm be executed in terms of path flows?

In transportation planning applications the analyst may delete and add links to
the network. Discuss the problems that the forward star representation poses for
easy addition and deletion of links. How can these problems be overcome?

Use the label-correcting algorithm to find the minimum path from node 1 to all
other nodes in the network depicted in Figure 5.4.

Explain why the particular strategy described in the text for managing the se-
quence list is advantageous for transportation networks. (As an aside, note that it
is not particularly advantageous for other types of networks, such as communi-
cation networks.)

Write a subroutine that would take as input a network in forward star repre-
sentation (transferred in a COMMON block or through GLOBAL variables) and
an origin node (transferred in the calling statement), and would compute the
minimum paths from the origin to all other nodes. The result is to be returned in
another COMMUON block or a set of GLOBAL variables (of predecessors).

Write an input subroutine that would read network link information (including
starting node, end node, and performance function parameters) in random order
and store it in a forward star representation. Include a flowchart.

Use the results of Problems 5.8, 5.9, and 4.10 (or 4.11) to write a computer code
that will find the equilibrium flows over a transportation network.

The operation research literature includes algorithms for finding the minimum
path from every node of a network to every other node. Indicate under which
circumstances such algorithms will be useful and explain why they are not used in
transportation planning applications.



Extensions
of User Equilibrium

Part il extends in several directions the UE framework discussed in previous
chapters. Chapter 6 focuses on the variable-demand problem, in which the O-D
trip rates are not assumed to be fixed but rather a function of the equilibrium travel
times. The concepts developed there are used to formulate a model in which the
network includes the transit mode, in addition to the automobile network, and the
modal split is modeled explicitly. Chapter 7 extends the original UE framework in
another direction by assuming that the total number of trips leaving each origin
node is known but that their destination is to be determined in conjunction with
the equilibration process. Chapter 8 removes the assumption used throughout Part
il that links are independent of each other, and Chapter 9 develops a framework in
which many travel choice dimensions (i.e., whether to take a trip, where to go, by
which mode, and what route to use) can be modeled simultaneously.
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